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Overview
On first appearances, one way to enable a robot to learn
would be to simply have the robot perform random actions
until something interesting happens. The robot could then
agglomerate the sequence of actions that lead to the inter-
esting result into a higher-level action and incorporate that
higher level action into its set of possible actions. Repeating
this process over time this would lead to increasingly com-
plex behavior and eventually to human-level competence.
It is of course not that simple, while associational learning
is clearly important, the number of challenges that must be
overcome to achieve learning of complex behavior seems to
grow with each published result.

For a robot to function in a complex world it must learn to
do many things that humans take for granted. It must come
to understand and use its perceptual system; specifically, it
must be able to identify objects and form object categories
and to ground those objects and categories in its internal rep-
resentation (Harnad 1990). It must also learn how to manip-
ulate objects and to anchor (Coradeschi & Saffiotti 2003), or
associate, external objects with internal representations of
those objects as it performs actions. So the robot does not
get lost, it must learn about small and large scale space and
navigation. Also, if it is desired that the robot communicate
effectively with humans, then it must learn natural language.

These challenges pose specific problems, a few of which
will be mentioned here. The sensory input vector is of ex-
tremely high dimension and so a lower dimensional sub-
structure consisting of useful features must be found. This
lower dimensional substructure must individuate actions and
objects so that the robot can reason about them. A com-
pounding problem is that even a very high dimensional sen-
sory input vector will contain only a primitive representation
of the environment, and the robot must still learn to func-
tion with this impoverished representation. Also, learning
how actions affect the sensory features requires identifying
which context features are important for enabling the action
to have the predicted or desired effect. Additionally, there is
the problem of naive induction, the robot must decide which
things are worth learning.

This seems like a daunting task indeed. However, some
inspiration can be taken from the fact that in the natural
world animals with incomplete solutions to many of these
problems are able to thrive. For example, most of a frog’s

perception comes through a very limited vision system that
provides its brain with only an exceedingly rudimentary rep-
resentation of its environment (Lettvinet al. 1959). Even
humans have in imperfect perceptual system, for example
there is blind spot in the area where optic nerve fibers leave
the retina (Kandel, Schwartz, & Jessell 2000). More signif-
icantly, in (Rensink, O’Regan, & Clark 1997) it was shown
that human subjects had difficulty noticing changes in a vi-
sual scene when the altered scene was shown after a briefly
presented blank scene. Thischange blindnesssupports the
idea that the human brain does not maintain a detailed rep-
resentation of the environment demonstrating that human-
level functioning is possible with a limited representation.

A useful way of looking at the robot learning problem
is the equationbehavior = architecture× content (Laird,
Lehman, & Rosenbloom 1996). A robot must learn an ar-
chitecture, content, or both. The methods surveyed in this
paper will focus on specifying some form of architecture and
then learning content for it. This architecture supplied must
be general enough to allow a broad variety of behaviors, but
if it is too general then little can be learned. This tradeoff
is roughly analogous to the concept of inductive bias as ex-
plained in (Mitchell 1997). This survey will focus on partic-
ular methods to enable a robot to learn useful concepts and
behaviors, and will not be organized by schools of thought.
However, it is worth noting that there are two contemporary
approaches to robot learning, and they will be discussed in
the remainder of this section.

Behavior-Based Robotics
One way of organizing the learning process is to focus on
learning specific behaviors. This model can be traced back
to the subsumption architecture (Brooks 1986). A recent
example is (Ballardet al. 1996) in which a system is devised
that learnsmicrobehaviorsin a virtual reality environment.
These microbehaviors are state/action tables and are built
using reinforcement learning. Multiple microbehaviors may
be running at once and so the system also includes methods
for microbehavior arbitration and selection. A textbook that
emphasizes the behavior-based approach is (Arkin 1998).

Developmental and Epigenetic Learning
Developmental robotics focuses on task independent learn-
ing and is inspired and influenced by developmental psy-



chology. Epigenetic robotics is a similar effort except that
the emphasis is more on cognitive and social development
(Lungarellaet al. 2004), and here they will be discussed to-
gether. An important early work in this area was the schema
mechanism (Drescher 1991), and an article in Science mag-
azine (Wenget al. 2001) helped to solidify developmental
learning as an independent and cohesive area. A recent sur-
vey is given in (Lungarellaet al. 2004). The remainder of
this section will highlight some recent work in this area.

Weng (2004), has put forth some broad ideas for devel-
opmental robotics. One particular idea is that he argues for
the need for a “mind centered” representation as opposed to
a “world centered” representation because of the variety of
sensory inputs that refer to the same world-centered object.
He therefore concludes that a symbolic representation is not
suited for developmental learning, and that what is needed is
a high-dimensional, mind-centered numeric representation.

In (Gold & Scassellati 2005), a method is described that
allows a robot to distinguish when it is looking at itself in
its visual field by learning a range for the amount of time
that it takes to see the results of its own motion. Thus, if the
robot initiates motion and then sees movement within that
range of time, then it presumes that it is its own body that it
is seeing.

The Constructive Learning Architecture (CLA) (Chaput
2004) is method that uses a hierarchy of self-organizing
maps (SOMs) (Kohonen 1995) to model cognitive develop-
ment. At the lowest level the SOMs are trained on the actual
input vectors. As part of this training, a distance is calcu-
lated between the input vector and every representative node
in the SOM. This distanceai between input vectorx and
SOM nodei is calculated as

ai = e−
|xi−mi|
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whereσ is used as a parameter of how muchai is affected
by distance. When a training vector is presented to a lowest
level SOM the vectora can be collected, this vectora is then
used as the training vector for the next higher level. This
means that for a given SOM that is not at the base level that
the ordinality of its nodes must be the sum of the ordinalities
of the lower levela vectors that feed into it. The SOMs
can be organized into trees and loops with or without time
delay. The CLA architecture gives no automatic way for
the hierarchy to be formed, the structure must generally be
created by hand or by some outside specified algorithm. An
important element of CLA is the ability to do fallback. If
a particular level of SOM doesn’t have a strong activation
for a particular input vector then the system just utilizes the
lowest level for which there is a sufficient activation.

Learning States and Actions

This section will discuss various methods that allow a robot
can learn about the nature of its environment and about how
its actions affect the environment. The emphasis for this
section will be on the notion of state and how state is learned
and represented.

Learning of Deterministic Finite Automata

One way to represent the environment is by using a Deter-
ministic Finite Automata (DFA). The robot can take actions
to transition from one state to another, and the output at each
state corresponds to what the robot perceives in that state.
The problem then is to learn the underlying DFA for an envi-
ronment. DFA learning can be complicated by various fac-
tors: there may be many states that have the same output
(ambiguous states), the robot may make errors in sensing
the output of the state, and the robot may make mistakes in
moving from one state to another.

An algorithm calledL∗ (Angluin 1987) allows a robot to
learn a DFA with ambiguous states if there is a reset that can
jump the robot back to a fixed state, and the robot is pro-
vided with an oracle that can answer two kinds of questions.
The oracle can say if a presented string is in the language,
and the oracle can say if the currently constructed DFA is
isomorphic to the correct DFA, and provide a counterexam-
ple if it is not. To remove the need for a reset, (Rivest &
Schapire 1989) usehoming sequences. A homing sequence
is a sequence of actions such that if the outputs observed
by executing that sequence of actions from any two states
are the same, then executing that sequence of actions from
either of those two states leads to the same state.

Learning of DFA is closely related to the problem of
causal mapping with a high number of ambiguous states.
(Dudeket al. 1991) showed that markers were necessary for
mapping in a graph-like environment in which the the only
things that the robot could sense were if it were at a vertex,
the number of outgoing edges of that vertex, and the marker
carried by the robot. They gave a polynomial time map-
ping algorithm using these markers. In (Dudek, Freedman,
& Hadjres 1993), they replaced the markers withextended
signatures. A signatureis the number of outgoing edges of
a vertex, and the extended signature is the number of outgo-
ing edges of the vertices of a node’s neighbors, and possibly
their neighbors, etc. This procedure is successful for creat-
ing a map of the graph except in certain degenerate cases in
which outside information must be used.

(Deanet al. 1995) put forth an algorithm for learning
DFA with ambiguous states and the additional constraint
that an incorrect output value for a state may be perceived
with probability less than one-half. The algorithm takes ad-
vantage of the important assumption, which is that each time
the robot visits a state the output perceived may be different,
by visiting states multiple times. The algorithm does require
a distinguishing sequence, which is a sequence of actions
such that the sequence of observations created by executing
that sequence of actions from any two states will be distinct.
All homing sequences are distinguishing sequences but not
the other way around, and although all DFA have homing
sequences not all DFA have distinguishing sequences.

From DFAs to POMDPs and PSRs

As described in (Cassandra 2004), a partially observable
Markov decision process (POMDP) is a Markov decision
process (MDP) in which the robot is unsure of its current
state. It uses the sets of states, actions, transitions, and re-



wards of the MDP, but adds a set of observations. The obser-
vation received at a state gives the robot a clue about what
state it is in. This is done through the observation model,
which gives the probability of seeing each observation in
each state. At each timeti the robot maintains a belief state,
which is a probability distribution over all states reflecting
where the robot thinks it might be. This process of moving
between belief states via actions can be modeled as an MDP
over the belief states since the next belief state only depends
on the current belief state, the action, and observation (al-
though this is complicated by the fact that the value function
is a continuous function over the belief space).

Rivest and Schapire (1994) investigated a diversity-based
representation of finite automata. Thediversityof a DFA is
the number of test equivalence classes, meaning the number
of sets of tests that always give the same value. They point
out that for many real world problems with structure, that
the set of test equivalence classes for a DFA is much smaller
than the number of states. These ideas have been transferred
to the predictive state representation (PSR) framework. As
described in (Littman, Sutton, & Singh 2001), a PSR is de-
fined as a set oftestsconsisting of sequences of actions and
observations that provide sufficient information for a robot
to know the results of all other possible tests. The state of
the system is represented as a vector of probabilities of see-
ing the predicted observations given that the actions of the
tests were performed. In (Littman, Sutton, & Singh 2001),
it was shown that any environment that can be represented
with a POMDP can also be represented with a PSR, and fur-
ther that the number of the tests of the PSR would not be
larger than the number of states of the POMDP.

A PSR can be thought of as representing the state of the
world not by a node in a graph or by what the robot has seen
in its history, but rather would would happen if the robot per-
formed various action sequences; or, more specifically, the
probability of various actions sequences having their stated
effect. In (Singhet al. 2003) a gradient-based algorithm is
presented for learning to make accurate predictions of tests,
however they state that currently no algorithm exists for de-
termining a sufficient set of tests. An advantage of PSRs is
that their predictions are observations and are thus directly
observable, but PSRs have the disadvantage of being an un-
intuitive representation of a robot’s state.

Hierarchical Reinforcement Learning
Traditional reinforcement learning methods generally only
do well in situations in which there are relatively few states
(low dimensionality) and in situations in which the tasks to
be learned require relatively few actions (low diameter). Hi-
erarchical reinforcement learning is one proposed method to
alleviate these difficulties, and the excellent survey is (Barto
& Mahadevan 2003).

In (Sutton, Precup, & Singh 1999) hierarchy is achieved
through options. Anoption is similar to a subroutine and
consists of three parts. Anoption policythat is a policy for
behavior that is used while the option is running, aninitia-
tion setconsisting of the states from which the option can be
initiated, and thetermination conditionthat specifies when
the option terminates. Also there areoption modelswhich

give a probabilistic description in what state the option will
terminate and the total reward for running the option. Addi-
tionally, there areintra-option learning methodsthat allow
the policies of many options to be updated simultaneously.
Options are generally pre-defined, however in (Singh, Barto,
& Chentanez 2005; Stout, Konidaris, & Barto 2005), instead
of the options begin pre-specified, a salient event triggers the
creation of an option and its option model. The initiation set
initially consists of the state leading to the state that created
the salient event. As more states are found to chain to that set
of states the initiation state set is expanded to include those
states. This is very similar to Drescher’s notion ofcomposite
actionsas will be discussed later in the paper.

Other hierarchical reinforcement learning methods in-
clude Hierarchies of Abstract Machines (HAMs) (Parr 1998;
Parr & Russell 1998), and MAXQ Value Function Decom-
position (Dietterich 2000).

Bootstrap Learning

The Spatial Semantic Hierarchy (SSH) (Kuipers 2000) is a
method that a robot can use to build a topological map of
its environment and to reason about space. The SSH con-
sists of multiple levels each with its own ontology. The low-
est level is called thecontrol leveland consists of trajectory
following and hill climbing control laws that take the robot
from one distinctive state to the next. Starting from a state
the robot trajectory follows to the neighborhood of the next
state and then hill climbs to reach that next state. The goal of
this strand of bootstrap learning is to enable a robot that be-
gins with no knowledge of its sensors and effectors to learn
enough about itself and its environment to be able to reach
the first (lowest) rung of the SSH.

Uninterpreted Sensors and Effectors In (Pierce &
Kuipers 1997) a simulated robot that was initially endowed
with no knowledge of its sensors and effectors was able to
learn to use those sensors and effectors, and to eventually
be able to move between distinctive states. The first thing
that the robot needed to learn was what sensory modalities
it possessed. It did this by using agglomerative clustering
with a custom distance metric and a termination criterion on
all the time series data streaming from its input vector. This
time series clustering grouped items belonging to the same
modality together.

Once the sensory modalities were partitioned, the robot
performed a sequence of steps to determine if any of the
modalities that was composed of multiple sensory elements
had a shape. It found one such modality, the distance sen-
sors, with multiple sensory elements and went about deter-
mining if it had a shape. It did this by creating a distance
matrix composed of the distances between the time series
corresponding to sensory elements in that modality. It used
a distance metric which consisted of theL1 norm divided
by the number of observations. The robot then performed
metric scaling on that matrix using a scree diagram to deter-
mine the best number of dimensions. It then ran a relaxation
algorithm to refine the shape, and what emerged from the
distance sensor modality was a replication of the circle rep-
resenting the physical locations of the sensors on the robot.



This was a critical point because it was where space entered
the ontology. Before, all that existed was time and temporal
derivatives, but now, using the shape of the distance sensors,
spatial derivatives could be computed.

Using these spatial derivatives, the robot was able to learn
a model of its motor apparatus. It did this by first partition-
ing the infinite space of all motor control vectors into a fi-
nite set of representative motor control vectors that were uni-
formly distributed through the space. It then randomly exe-
cuted these motor control vectors for a period of time keep-
ing track of the average motion vector field for each move-
ment. The robot then used principal component analysis to
analyze the space of these average motion vector fields and
came up with a set of principal eigenvectors that captured the
effects of the motor apparatus. The robot then found the rep-
resentative motor vectors that matched the principal eigen-
vectors. Matches were found for the top two eigenvectors
and corresponded to turning in place and moving forward.

Once the robot had a sensor and an effector model it could
define features and local state variables. Local state vari-
ables are features that can be described as a function of the
motor control vector. The robot found that the local mini-
mum of the distance sensor could be described with such a
function. The robot found that if the local minimum was lo-
cated in a distance sensor in front of the robot then when the
robot went forward its value decreased, and that the opposite
occurred if the local minimum was located behind the robot.
The robot also found that if the local minimum was on one
of its sides, then that local minimum value often remained
constant as the robot went forward.

In order to define open-loop path-following behaviors
based on this local minimum, the robot used an arbitrary
target value for the distance of the local minimum. This
enabled the robot to hillclimb to this value. It could also tra-
jectory follow by keeping a local minimum as close to this
value as possible. In order to define closed-loop path fol-
lowing behaviors, the robot performed the open-loop path-
following behaviors with various other actions mixed in the
see how the other actions affected the local minimum. From
this, it learned how to adjust the value of local minimum
if is strayed too far from the target value. Using these
closed-loop path following behaviors, the robot then had
bootstrapped itself to the bottom rung of the spatial semantic
hierarchy (SSH) (Kuipers 2000).
Finding Distinctive States with a Growing Neural Gas
Once a robot has a sensor and effector model, the method
outlined in (Provost, Kuipers, & Miikkulainen 2004) can
be used to remove the need for built in control laws. The
method they constructed used a growing neural gas SOM
(Fritzke 1995) to partition the input space into distinctive
states. A limited number of actions were then defined to
move between these states. The actions that they used were
forward, backward, turn-left, andturn-right and each con-
sisted of trajectory following and then hill climbing. Trajec-
tory following consisted of traveling or turning until a differ-
ent node of the SOM became the closest node to the sensory
vector, and hill climbing consisted of following the gradient
such that the sensory input vector comes as close as possible

to the value of the new current node. A standard reinforce-
ment learning algorithm was then run using those distinctive
states and actions. The hill climbing is an area in which they
are working to improve, currently the robot must take a step
in each direction to find the gradient.

This approach can also be used to reduce diameter and the
dimensionality of a problem so that reinforcement learning
may be used more effectively. The dimensionality of the
problem is reduced by using the growing neural gas nodes
as states and the diameter is reduced by using the limited
number of actions to move between those states.

Place Recognition (Kuipers & Beeson 2002) improved
the robustness of place recognition using bootstrap learn-
ing. One challenge in place recognition isimage variability,
the problem of the same place never looking the same due
to the high dimensionality of the sensors; and another chal-
lenge isperceptual aliasing, the situation in which many
different places look the same. Their approach to dealing
image variability was to first cluster the sensory values at
distinctive states into a fixed number of clusters. Since their
method for choosing the number of clusters generally gave a
number that was fewer than the number of distinctive states,
perceptual aliasing was increased. To overcome the prob-
lem of perceptual aliasing, they then performed topological
mapping on this space. This removed the perceptual alias-
ing since topological mapping uses the relative positions of
the states with respect to each other to disambiguate them.
The output from the topological mapping was then used as a
supervisory signal for the supervised learning of the associ-
ation between perceptual views to states. This then allowed
the robot to know where it was without having to resort to
exploration to disambiguate its state.

The Schema Mechanism
The schema mechanism (Drescher 1991) is a method by
which a robot can learn a representation of how actions af-
fect the world. The system is made up of three core ele-
ments. Anitem is a predicate that can be eitherOn or Off.
The values of the items tell the robot everything it knows
about the state of the world. Anaction is something that the
robot can do to affect the world. Finally, aschemais a triple
composed of a context, action, and result. For a schema,
both the context and the result are composed of items that
can either beOn or Off. A schema says that if the context
items are satisfied and the action is taken, then the result item
will take on its specified value with some probability. The
goal of the system is to develop schemas that are reliable.
Using the example in (Chaput 2004), the schema

〈InFrontOfDoor|OpenDoor|DoorOpen〉
would mean that if the robot were in front of the door, and it
opened the door, then the door would be open.

Initially, the robot starts off with a set ofprimitive items
corresponding to both coarse sensory input and proprioper-
ception that are updated automatically by the system. The
robot also begins with a set ofprimitive actionsthat corre-
sponds to simple movements, and each such primitive action
also serves as the action for a schema with an empty context
and an empty result called abare schema.



To begin the learning process the robot executes its primi-
tive actions and by keeping track of correlations between all
actions and all items, the system incrementally creates new
schemas that bring about results with increasing reliability.

In order to add to the ontology, when a schema is found
to be unreliable but locally consistent (meaning that when
its schema is successful in bringing about its results it will
continue to be successful for a period of time afterwards)
the schema itself is reified as asynthetic itemand can then
become part of the context or result of a schema just like
the primitive items. Additionally, when a schema is cre-
ated that has an item in its result that does not exist in any
other schema then acomposite actionis created. A compos-
ite action is like a subroutine, it allows the robot to perform
high-level actions. When a composite action is created a
controller is created for it that backchains to find applicable
schemas that lead toward the goal. When a schema contain-
ing the composite action is is chosen for execution, thecon-
troller continuously activates the applicable schema closest
to the goal until the goal is achieved.

A composite action is quite similar to anoption in rein-
forcement learning (Sutton, Precup, & Singh 1999), both
serve as closed-loop control laws to achieve some high-level
goal. Composite actions are created each time a novel re-
sult is obtained, this is similar to how options are created in
(Singh, Barto, & Chentanez 2005; Stout, Konidaris, & Barto
2005), except there the results that trigger the creation of an
option are predefined “salient” events.

When the schema mechanism was run on the simplemi-
croworld (a 7 × 7 grid consisting of an immobile agent, a
hand, an eye, and two items) the robot learned a model for
how the location of objects in the visual field would move
as the glance moved, as well as models for the movement of
its hand and glance. It was also able to learn such things as
how to bring its hand to its mouth and how to shift its gaze
to bring objects to the fovea.

The schema mechanism does not represent what the robot
should do in a given situation, but rather what would happen
if it performed some action. It builds schemas by by finding
results that are only slightly more likely to occur after a spe-
cific action then otherwise, it then hillclimbs by incremen-
tally finding context conditions that make that result occur
more reliably. The difficulty however, is its computational
complexity. To store all of the correlations it requires space
equivalent to the number of schemas times the number of
items, and after each action it requires time equivalent to a
subset of the schemas times a subset of the items. These
subsets are not necessary small. A potential method for alle-
viating the computational complexity problem of the schema
mechanism is CLASM, which is discussed next.

The Cognitive Learning Architecture Schema Mecha-
nism (CLASM) CLASM replaces the process of marginal
attribution by allocating a SOM for each action. The vec-
tors of these action SOMs consist of the extended context
and extended result of the action at the time the SOM was
created. After a suitable training period, nodes of the ac-
tion SOM that contain result items above a certain thresh-
old are harvested. Each harvested schema then becomes rei-

fied as a synthetic item and a composite action is created
for each new result as part of some harvested schema. The
resources of the original SOM level are then released and
the training of the next level begins using all the original
actions and the new composite actions. Additionally, each
node then contains weights for all the original items plus the
new synthetic items. When CLASM was applied to the mi-
croworld of Drescher it was able to learn the same things as
in Drescher’s implementation.

CLASM is more efficient because it eliminates the trail
of context schemas, a schema with three context items can
be added all at once. Additionally, it eliminates many of the
ad hoc methods Drescher proposes to mitigate exponential
growth of schemas. For example, there is no need to keep
track of whether one schema is more specific than another,
and multiple results can be added without needing to be in
the context of another schema. However, there is one im-
portant difference in the behavior of the generation of new
schemas. In CLASM, if a particular item is alwaysOnwhen
an action is taken then the schemas created using that action
will contain that item, however in Drescher’s implementa-
tion they will not because what is taken into account is the
ratio of success whenOncompared withOff and not just the
correlation.

Focus of Attention and Motivation
A typical robot learning system will instruct the robot to ex-
ecute various actions in various situations to learn the ef-
fects of those actions in those situations. Ideally, one would
want the robot to explore the areas of the state and action
space that could teach it the most. One guiding principle
for formulating this is to motivate the robot to learn in ar-
eas in which it is least able to predict the outcomes of its
actions (Schmidhuber 2005). However, some areas may be
so difficult that no learning can take place. This leads to
the formulation of a second principle that the robot should
be motivated to explore areas of its state and action space
based on its ability to improve its predictions in those spaces
(Schmidhuber 2005).

An example of the first principle is (Singh, Barto, &
Chentanez 2005; Stout, Konidaris, & Barto 2005). In that
body of work the robot is intrinsically rewarded for bring-
ing about unexpected salient events, with the reward be-
ing directly proportional to the degree that the event was
unexpected. This high reward will cause the robot to to
bring about this state often, but as it does is unexpected-
ness will diminish and it will go on to new behaviors. This
is very similar to the conceptshabituationand hysteresis
in (Drescher 1991). When activating schemas habituation
causes schemas that have been activated many times in the
past to be activated serving as a focus of attention, but hys-
teresis allows the robot to go onto new behaviors after the
current behaviors are sufficiently learned.

An example of the second principle is (Oudeyeret al.
2005). They approach the problem of endowing intrinsic
motivation using what they refer to as Intelligent Adaptive
Curiosity (IAC). In this approach, the memory of all expe-
riences is split into regions based on exemplar vectors of
experience. Each region has a learning machine called an



expert, the expert is trained on the exemplars in a region.
When a prediction corresponding to a particular region has
to be made by the robot it calls on the expert of that region
to make the prediction. The prediction is compared with the
actual result and that difference is noted in a list. This list
is then used to approximate the derivative of the the error
curve in that area. Actions are then chosen based on where
the derivative is the steepest.

Learning About Objects and their Meanings
Methods such as Shanahan’s abductive account of percep-
tion (Shanahan 2005) exist for enabling the robot to reason
once the world has been broken up into objects and relations,
but no comprehensive method exists for finding such dis-
cretizations. One promising direction of research, however,
is active vision. (O’Regan & Nöe 2001) argued in their land-
mark work that instead of being used as a passive receptor,
vision is used to actively explore the world and that humans
use sensorimotor contingencies of the visual system to learn
about the objects in their environment. This embodied learn-
ing approach leads to one method for symbol grounding by
allowing symbol meaning to be encoded in visual stimuli.

Grounding Words in Visual Representations
(Roy & Pentland 2002) in their CELL model used the fu-
sion of a visual and an auditory sensory stream to learn an
association between the verbal and the visual representation
of objects, effectively grounding the verbal representation
to the visual one. Using an input stream of natural care-
giver speech that occurred while a caregiver played with an
infant, and a visual stream of the object with which they
were playing, CELL was able to associate the phonetic rep-
resentation of the words with the objects. The system did
both speech segmentation and word matching, and associ-
ated words with objects by exploiting the fact the the word
for the object would often be uttered while the object was in
the visual scene.

The work of (Yu & Ballard 2004a) was similar in the
respect of associating temporally co-occurring objects and
words, however, word segmentation was done separately
and each scene contained multiple objects. This temporal
co-occurrence was also exploited in (Yu & Ballard 2004b)
with the addition that objects and actions were grounded
with the aid of deictic references. These deictic references
(Ballard et al. 1996) help to reduce the space of possibili-
ties for word association and allow more effective learning
of words (Yu, Ballard, & Aslin 2003).

(Steels 1998) in his talking heads experiment created a
system in which two robots watching a scene create a lex-
icon to describe the objects within. Each robot identified
image segments (objects) in the scene and created a feature
vector for each object. To add words to the lexicon, one
robot choose one object that had a subset of distinctive fea-
tures as the topic and sent a word, represented as letters, to
the other robot. The other robot checked to see which sub-
sets of distinctive features were in its view and associated
that word with each such subset. Based on the success of
these associations a shared lexicon was created.

Manipulating Objects and Affordances
An affordanceis described in (Gibson 1979) as what the en-
vironment offers for manipulation given the physical charac-
teristics of the observer. The affordances of the environment
exist independent of the observers ability to perceive them,
and they do not change as the goals of the observer change.

In (Modayil & Kuipers 2004) an algorithm is put forth that
allows a robot to track and categorize movable objects using
a range sensor. They use an occupancy grid, and if a particu-
lar square has ever been empty then any subsequent reading
falling into that square is considered to be part of a mov-
able object. Such readings that are near to one another are
merged into possible objects that are tracked as they move
or the robot moves, or both. The shapes of objects are then
determined by sensing the objects at different angles using a
range sensor. The objects are then clustered by shape using
online clustering.

(Stoytchev 2005) has a system in which a robot has a set
of exploration behaviors relative to objects. Each body part
has an associated Cartesian coordinate system. When a be-
havior is initiated with a body part, a set of invariant func-
tions is run to see if the movement of the object corresponds
to any of the invariants, meaning that the object was moved
by the body part.

Modeling Sensory Input: Neural Models of
Vision

Vision is becoming increasingly important for robotics, but
making using of visual information is an extremely difficult
problem. However, if we were able to successfully model
human vision, than such a model might give us a handle on
the problem of creating useful robot vision systems. This
section describes two such modeling efforts.

The HLISSOM model (Bednar & Miikkulainen 2004) is
a hierarchy of sheets of neural nets that models the early
visual pathway. The model contains a sheet of photorecep-
tors, the LGN OFF and ON sheets, and the V1 area. They
performed an experiment in which they simulated both the
prenatal and postnatal stages of development. In the prenatal
stage they presented noisy patters of neural activity contain-
ing a disk, and in the postnatal stage they presented natural
images. Significantly, they found that the postnatal map was
a refinement of the prenatal one without changing the over-
all shape. Also worth noting is that the postnatal map was
biased towards horizontal and vertical orientations.

Olshausen (2003), argues that the visual cortex uses a
probabilistic model of images, and he puts forth a model that
uses a linear superposition of features. He states that redun-
dancy reduction has been an reasonably good framework to
describe the way that the neurons in the retina and the LGN
respond to stimulus. In traveling from the retina and the
LGN to the visual cortex the information from the 100 mil-
lion photoreceptors must pass through the optic nerve which
contains approximately one million ganglion cells. Thus, the
redundancy reduction model seems to fit well with the need
to optimize the limited resource of the optic nerve. However,
the V1 area of the visual cortex has many more outputs than
there are inputs in the optic nerve, and he concludes that re-



dundancy is being increased in the cortex. He argues that a
sparse codecould be used to model V1, meaning that only
a small fraction of the neurons would be active at any mo-
ment. The neurons would form basis and any visual image
could be represented as a small subset of all the basis. The
model is of the form

I(x) =
∑

i

aiφi(x) + ν(x)

whereI(x) is an image patch,φi is a basis function,ai is
the coefficient, andν(x) is the Gaussian noise. The image
patch is represented as the vectora and it is important to
note that this basis set isover-complete, meaning that there
are moreai than there are elements in the image patch. This
means that there are an infinite number of ways to describe
an image. For a particular image thea vector is chosen that
maximizesP (a|I, θ) whereθ is a vector of noise parame-
ters. By Bayes rule we have

P (a|I, θ) ∝ P (I|a, θ)P (a|θ)
and the MAP estimate of̂a can be computed by gradient
descent.

He carried out a method to compute the basis functions on
hundreds of thousands of image patches from natural scenes
and got a set of spatially localized, oriented, bandpass func-
tions. He also extended this model to incorporate time by
using sequences of images with a format given by

I(x, t) =
∑

i

′∑
t

ai(t′)φi(x, t− t′) + ν(x, t)

and he was again able to get a set of spatially localized, ori-
ented, bandpass functions, however in this case they trans-
lated over time.

Transfer Learning
Robot learning requires more flexibility than traditional,
one-task machine learning programs provide. The book
Learning to Learn(Thrun & Pratt 1998), covers many ex-
amples of learning algorithms whose performance on a par-
ticular task improves both with experience on that task and
experience on related tasks. The idea is that having access to
related tasks in the domain can allow the algorithm to learn
invariants that can help with all tasks. Most of the methods
in the book are based on neural networks, and within that
framework there are two basic approaches.Representational
transferrefers to methods that use the network trained on a
previous task as the starting point for learning the new task,
andfunctional transferrefers to task transfer that is done on
multiple tasks simultaneously.

In (Caruana 1997), learning multiple tasks at once was
shown to give higher overall performance than learning a
single task at a time. In the most basic implementation,
multitask learning (MTL), the multiple tasks were trained
in parallel on a neural network using a shared hidden layer.
This performed better than single task learning (STL) be-
cause learning multiple tasks in parallel allows internal rep-
resentations in the hidden layer that arise while learning one
task to be used for other tasks. He showed that it was indeed

this multitask effect that caused the increased performance,
and not some other factor, by looking at the performance of
a single task when all of the other tasks had randomly reas-
signed training signals. He found that the shuffling brought
the performance of MTL down to be comparable with STL.
He also ruled out that MTL performs better due to restricted
net capacity by running STL at various net sizes.

Memory-based Methods
In memory-based methods the robot stores all of its expe-
rience and then decides on an action for a given state and
desired outcome based on an interpolation of similar state-
action-outcome tuples in memory. The mathematics for this
method is explained in (Atkeson, Moore, & Schaal 1997a),
and in (Atkeson, Moore, & Schaal 1997b) the methods are
applied to various problems such as billiards and devil stick-
ing. The simplest case is for temporally independent tasks.
Given a statex, and an actionu, the outputy can be repre-
sented by the equation

y = f(x, u) + noise.

Thus an inverse model in which a statex and a desired out-
puty gives the necessary actionu is written as

u = f̂−1(x, y).

If the (xi, yi, ui) tuples are listed in a database, then the cor-
rectui can be found by finding the tuple(s) with the closest
xi, yi values. A disadvantage of the inverse model is that it
can go awry in non-monotonic environments. Therefore, a
forward modely = f̂(x, u) can also be used, however it is
more complicated to derive the actionui based on the out-
put yi and the statexi, because a numerical inversion of the
forward model is required. The inverse model can provide a
seed for this inversion, and this is the process that was used
for the task of billiards. The system learned to sink another
ball with the white ball with roughly 75% accuracy in 100
trials.

The other application of devil sticking was more compli-
cated because the tasks were temporally dependent. Dead-
beat control (control that attempts to fix the error in one ac-
tion) was found to be insufficient. They implemented alin-
ear quadratic regulation(LQR) controller and found that it
worked for devil sticking with manual generation of training
data to estimate the matrices of the local linear model but
required a manual search for an equilibrium point. These
problems were alleviated by using theshifting setpoint al-
gorithm(SSA).

Search Trees for Feature Discovery
One important open problem is how to devise a systematic
way for a robot to discover useful features in its sensory
stream. One potential approach to this problem is for the
robot to perform a search through the space of features us-
ing a pre-defined set of statistical methods as operators and
applying those operators to current features to create new
features.

The robot would begin with its set of type-specific statis-
tical methods and the raw sensor stream as the first feature.



It would then do a breadth first search through the space of
possible features using the statistical methods as operators
to create new features. These operators being strongly typed
would help to limit the search space. In deriving a new fea-
ture, an operator could use the data from any of the prede-
cessors of the current feature.

For example, in (Pierce & Kuipers 1997) this method was
used to find the local minimum distance sensor as a useful
feature. That branch of the search tree proceeded as follows.
A group generator (clustering) was applied to the raw sensor
feature to partition the input vector into sensory modalities.
Then, an image feature generator was applied and it found
that one group of sensors formed a circle. The local mini-
mum operator was then applied, and once the local minima
were identified the tracker operator was applied to identify
the location of the local minima relative to the robot. With
this feature the robot was able to learn homing and path fol-
lowing behaviors.

This is one viable approach to generate the features, but
what is needed is a robust and efficient way to determine the
usefulness of a feature. There are really two issues here, one
is the coherence of the feature, does the feature make any
sense? Searches that go through incoherent features can be
abandoned. The second is the usefulness of a feature. A
confounding factor is that sometimes the feature itself may
not be directly useful to the robot, but features that can be
derived from it may be. Pierce and Kuipers (1997) used the
idea that changes in the feature value should be predictable
based on the output vector as a metric for usefulness, coin-
ciding with their goal of navigation.

Statistical Learning Methods
Statistical methods appear to be becoming increasingly im-
portant in robot learning. Bayesian methods have been par-
ticularly important. Using Bayesian methods, robots can
make predictions by averaging the predictions of all the pos-
sible hypothesis weighted by the probability of each hypoth-
esis being correct. However, this can be cumbersome, so
what is often used is the maximum a posteriori (MAP) hy-
pothesis. This means using only the most likely hypoth-
esis is used to make a prediction. Another simplification
is to assume that all of the hypothesis initially have the
same probability of being true. Under this assumption, in
order to choose the MAP hypothesis it is only necessary
to choose the hypothesishi that has the maximum value
for P (data|hi). This hypothesis is called the maximum-
likelihood (ML) hypothesis and is a quick and simple way
for a robot to make decisions in an uncertain environment.

The expectation maximization (EM) algorithm is also
very commonly used in robot learning (Thrun 2002). Vari-
ous other missing variables can be added to the algorithm.
For instance, in (Law, Jain, & Figueiredo 2003) missing
variables are added to do feature selection.

Regression Methods
Statistical regression is a classic technique for function ap-
proximation. It is also important memory-based robot learn-
ing methods as was discussed previously.Logistic regres-
sion calculates the probability of an item being in class A

divided by the probability of an item being in class B, which
produces values between(−∞,∞). Kernel regressionfinds
constant values using locally weighted training examples
(Atkeson, Moore, & Schaal 1997a). It gives the estimated
value ŷ(q) by finding the weighted average at a pointq us-
ing a kernel functionK and a distance functiond

ŷ(q) =
∑

yiK(d(xi, q))∑
K(d(xi, q))

Locally weighted regressiondone as in global regression ex-
cept that the points are weighted by a kernel function rele-
vant to their distance from some reference pointq. It tends
to work better than kernel regression near the edges.Ridge
regressionis used if there are not enough equations to solve
for the unknown parameters in locally weighted regression.
To keep the matrix of points from becoming singular, it adds
a matrix with small positive values along the diagonal.

Manifold Learning

Sensory input data is generally of very high dimension and it
is therefore useful and often necessary to reduce its dimen-
sionality. If the data exist in some lower-dimension man-
ifold there are many ways of doing this. One classic lin-
ear method isprincipal components analysis(PCA), which
finds the orthogonal directions of maximum variance.Mul-
tidimensional scaling(MDS) is another classical method. It
finds a lower dimension approximation that preserves the
mutual closeness that exists in some higher dimension space.
One unique characteristic is that the process does not require
the data points themselves, only the distances between them.
Locally linear embedding(LLE) (Saul & Roweis 2003) is
a nonlinear method that assumes that the data are sampled
from a manifold. Each data pointXi is approximated by lin-
ear reconstruction using the weightsWij of its k neighbors,
or those within anε (Euclidean) in the original data space.
Then for each data pointXi, the same weightsWij are then
used to identify the lower dimensional representationYi that
has the lowest error as given by:

Φ(Y ) =
∑

i

(
Yi −

∑
j

WijYj

)2

Another nonlinear method isIsomap(Tenenbaum, de Silva,
& Langford 2000), which uses the concept of geodesic dis-
tance. This use of geodesic distance allows it to represents
manifolds such as the “Swiss roll.” It first connects each
point with either itsk nearest neighbors or those within some
ε in Euclidean input space. Then it calculates the shortest
path distance between all pairs of points using these con-
nections. It then performs MDS using the shortest path as a
measure of distance between two points.Independent com-
ponent analysis(ICA) seeks to find independent sources of
information in the data. As described in (Leeet al. 1998),
if s(t) is a sense vector received with each scalar value con-
sisting of a linear combination ofm sources as expressed by
theN ×M matrixA, then

x(t) = As(t)



and the goal is to find a linear transformationW such that
the independent components are found

u(t) = Wx(t) = WAs(t)

This is solved by various methods that maximize entropy to
minimize the mutual information between sources.

Additional Methods

Mixture modelsconsist of mixtures of different probabil-
ity density functions, usually Gaussians, in different pro-
portions. If the covariance matrices are constrained to be
a circular then it has the form of a radial basis expansion. To
obtain aradial basis function, a small number of centroids is
first obtained via k-means clustering or some other method.
Then the data is recoded with the centroids as a basis. If
there arek centroids, weightsw, kernel functionsK, and a
distance metricd, then the estimated value ofx, denoted by
f̂(x), is given by

f̂(x) = w0 +
k∑

u=1

wuKu(d(xu, x))

Given the basis functions the weights can be learned easily.
Dynamic time warpingassumes a set of template time se-

ries. When a new time series needs to be classified it is com-
pared with the template time series. For each comparison
between time seriesi and templatej they are compared at
every possible time combination at a cost ofO(|t|2). This
allows time series that our out of phase but similar otherwise
to be classified as the same.

Another useful statistical technique to learn a distance
metric. As described in (Xinget al. 2002), if one is given
certain points in the input space that are considered to be
similar, it is possible to learn a distance metric based on how
those points are similar. If given the problem of learning a
distance metric of pointsx andy of the form

d(x, y) = dA(x, y) =
∥∥x− y

∥∥
A

=
√

(x− y)T A(x− y)

the optimization problem is to learn a matrixA that best
respects the distances given. Note that ifA is the identity
matrix then this is equivalent to the standard Euclidean dis-
tance.

Finally, data compression can be achieved withvec-
tor quantization, which associates each input with a code-
word to represent that input. Is a form of lossy compres-
sion. (Lin̊aker & Niklasson 2000) put forth the resource-
allocating vector quantizer (RAVQ) that is designed to seg-
ment a sequence of vector inputs and to represent each se-
quence type with a vector model. Specifically, it segments
sequences with stable periods and abrupt transitions. It does
this by maintaining a moving window of then most recent
input vectors. It adds the moving average of this window as
a new vector model when the distance between the moving
average and the closest vector model is greater than a thresh-
old and when the current moving average is considered to be
stable.

Conclusion
Many pieces of the puzzle have been represented in this
sampling of robot learning methods. At times it appears that
all that is needed is to find the right way to put it all together,
and at other times it seems as if something very profound is
missing. Time will tell which conjecture is correct.
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