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Introduction statistics are for creating new schemas. The reliability of a

The schema mechanism (Drescher 1991) enables a learn-Schema is number of times it is successful divided by the
ing agent to construct a representation of how actions affect humber of times it is activated, and is given by

its environment. The schema mechanism is a an example
of a constructivistAl system. In such a system, the learn-
ing agent begins only with very basic knowledge of its sen- A schema is said to beeliable if its reliability is above a
sors and effectors and through interaction with its environ- threshold. A schema iglid if it would succeed if activated.
ment incrementally builds increasingly sophisticated behav-  With respect to notation, schemas will be represented in
iors. Constructivism traces its roots back the the develop- the form(ab—c|d|fg) wherea, b, andc are all context items,
mental psychologist Jean Piaget (1952; 1954) who postu- the action isi, and the result items afeandg. All items are
lated a theory of development in which intelligence is built considered to b®nunless preceded by-g thus in this case

up in stages, with each stage building on the previous one. c would beOff. Items with names longer than one character
The schema mechanism is designed to serve as both a test ofvill be separated by &. Using the concrete, but high level
Piaget's theory, and as a possible framework for constructing €xample from (Chaput 2004), the schema

artificial intelligence.

This papergwill provide a detailed explanation of the {InFrontOfDoor|OpenDoor|DoorOpen) (1)
schema mechanism from the perspective of an implemen- would mean that if the learning agent were in front of the
tation on a serial computer. The strengths and weaknessesdoor, and it took the action of opening the door, then the door
of the schema mechanism as a potential robot learning and would be open. (Note that this example is at a much higher
control mechanism will be discussed, and related work on level of abstraction than the schema mechanism has been
the schema mechanism will be surveyed. Finally, some di- able to achieve, but it will be used throughout the discussion

Reliability = count(success)/count(activation)

rections for future work will be explored. because of its intuitive appeal.)

The Schema Two Key ldeas

The central organizing structure of the schema mechanism The schema mechanism specifically addresses two funda-
is theschemaA schema is a triple that consists ofantext mental challenges in building artificially intelligent systems.

action, andresult A schema is not a production rule, itdoes The first is the challenge a@mpirical learning given that

not say what action should be taken in a particular situation, the same action can have different effects in different situa-
but rather it states what would happen, with some probabil- tions, how can the learning agent learn which prerequisites
ity, if a particular action were taken in a particular situation. are necessary to cause particular action to lead to a particu-
An actionis an event that can affect the state of the world. lar result? It is clearly intractable to try all combinations of
The context and result of a schema consist of state elementsprerequisites and actions to see which results follow; and a
calleditems Items are state elements that can take the val- compounding problem is that results are sometimes brought
uesOn, when true Off when false, otJnknown A context about by causes other than those stemming from the learn-
will contain one or more items designat@c or Off, and a ing agent’s actions. The schema mechanism’s solution to
result will generally contain only one item except in the spe- this difficulty is to use a method calledarginal attribution

cial case which will be discussed later. A schema’s context which breaks the problem into two parts. First, it finds re-
is satisfiedif all of its context items have the specified val-  sults that follow actions if even with only slight reliability.
ues, and a schemaastivatedif its context is satisfied and Then, for each action/result pair, it incrementally looks for

its action is taken. A schemas is saidstecceedf it is acti- individual context items that increase the reliability of that
vated and its result item(s) take on their specified value after result following that action.
activation, and it is said tail otherwise. Each schema also The second challenge @ncept inventionhow can the

contains statistics fogveryitem, not just its context and re-  learning agent add novel concepts to its ontology? The
sult items, in iteextended contexindextended resulfThese schema mechanism does this by finding schemas that are



notreliable and ardocally consistent A schema is locally - -
consistent if its success from very recent activations is a Visual Field —
good predictor of subsequent success. Drescher gives no

explicit formulation of what it means to be locally consis-

tent, but a simple one would be to define it as the probabil- Fovea—— |
ity of a successful activation, given a successful activation

in the lastk time steps, is above a threshold. To add new . — Ball
concepts the schema mechanism creagsthetic itenfor @7—_ Gripper
such schemas, and these synthetic items can then be in the
context or result of any schema just like regular items. The H— Agent
synthetic item i©Dnwhen its host schema would have a suc-
cessful activation and thus represents the unknown state of
the world that causes the host schema to be successful. If
the synthetic item i$n, then the host schema itself does
not have to be activated to find out if it would be successful.
This is important because it allows the schema mechanism
to represent states that are not visible to the learning agent. |, the microworld the agent cannot move but is endowed
In addition, since synthetic items can become part of the re- \yiih ten primitive actions as given in Table 1. The hand can
sult for a schema, the schema mechanism can find ways {0 move in four directions in @ x 3 grid directly in front of
turn themOn or Off. the agent and occupy positiofis, 1) to (3,3) (in Figure 1
i the hand is at position (2,1)). The agent can also move its

The Schema Mechanism visual field in four directions within & x 3 grid and occupy

Beginning the Learning Process positions(1, 1) to (3, 3). A good way to think about this is

The schema mechanism begins with a setrofitive items that the agent can move its fovea, which is labeled "X in
hich it that d to both . Figure 1, in the sam@ x 3 grid as the hand (in Figure 1
which are items that correspond 1o both coarse Sensory IN-y,q g g field is in position (1,3)). The learning agent can
put and proprioception that are updated aut(_)maucally by the grasp something if it is to the left of its hand and can also

system. The primitive items are always eith@n or Off
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e

Figure 1: The microworld

(only synthetic items may have the valumknowr). The ungrasp.

schema mechanism is also endowed with a seprofi-

tive actionghat corresponds to simple movements, and each Table 1: Primitive Actions

such primitive action also serves as the action for a schema

with an empty context and an empty result, calledase handf move hand front

schema handb move hand back
The sets of primitive items and primitive actions are user handr move hand right

defined. Initially, everything that the schema mechanism handl move hand left

knows about the world is expressed in the values of the eyef move eye front

primitive items and the only actions that the learning agent eyeb move eye back

can take are the primitive actions. And, of course, the only eyer move eye right

schemas available to the learning agent are the bare schemas. eyel move eye left
Learning begins by activating schemas to observe their grasp grasp object left of hand

results. Schemas compete for activation. The schema mech- ungrasp | open the hand

anism chooses schemas for activation while doing two fun-

damental activities: exploration and goal pursuit. There are  Tpe primitive items endowed to the agent are given in
two types of activation for schemasxplicit activationand ~ Tapje 2. The agent can know the position of its hand and
implicit activation Explicit activation is when a schemais  eye, and if its hand is closed and grasping something or just
selected for activation and its action is initiated. Implicitac- jpsed. The hand has four items for touch on its four sides
tivation is when a schema’s context happens to be satisfied gnq four detail items for touch on its left side where its fin-
and its action is initiated as part of activating some other gers are. So, for example if the ball were to the left of the
schema that contains the same action. Both types of activa- hand. thenactl would beOnand so would the detail item(s)

tion are used for learning. for the ball. The body also has four items for touch, each on
. one side. Similar to the hand, if there is something directly
The Microworld in front of the body, then that item can be tasted. Note for

Drescher tested his version of the schema mechanism us-both the fingers and the tongue ti?4tdifferent sensations
ing the microworld as shown in Figure 1 (image taken from are possible. The eye has 25 course visual items, so that if
(Chaput 2004)). This discussion of the microworld is pre- an object appears in that region then the corresponding item
sented here to give the reader a reference point that may is On. And finally, each of the four foveal regions has 16 de-
prove helpful for grounding the information in the follow-  tail items for a total 026 different possible sensations for
ing sections. each foveal region. Using the configuration in Figure 1 as an



Table 2: Primitive Items SCHEMA-SELECTION
returns: schemsa

hpll,...,hp33 hand positions if activity = goal pursuithen
vpll,...,vp33 visual positions select schema randomly from those close to the
tactf touching hand (front) maximum value, where schema value is based pn a
tactb touching hand (back) combination of primitive and delegated value in the
tactr touching hand (right) schemas result, and added value for being an incom-
tactl touching hand (left) plete composite action in progress
textO..., text3 detail touching fingers else
bodyf touching body (front) select schema randomly from those close to the
bodyb touching body (back) maximum value, where value is based on a combi-
bodyr touching body (right) nation of hysteresis, habituation, action equalization,
bodyl touching body (left) inverse action, and added value for being an incom-
tasteQ, ..., taste3 | taste (in front of body) plete composite action in progress
hcl hand closed end if
hgr hand closed and grasping if s is composite schentaen
vf00, ..., vf44 course visual field items return schema from composite action controller
fovf00, ..., fovf33 | front foveal region else
fovb00, ..., fovb33 | back foveal region returns
fovrQ0, ..., fovr33 | right foveal region end if
fovl00, ..., fovI33 | left foveal region
fovx00, ..., fovx33 | center foveal region Figure 2: Pseudocode to Select a Schema for Activation

example, iftaste2 andtaste3 are triggered by the hand then
the itemshp21, vpl3, vf41, bodyf, taste2 andtaste3 are all

On, and all other items ar®ff. to reduce thrashing, schemas are given added value if they
are composite actions in progress. During exploration, the
Selecting Schemas for Activation activation importance of schemas is based on what can be

learned; and during goal pursuit, activation is based on
reaching an explicit top-level goal. This explicit top-level

goal is designated by an item with a value. This is sepa-
rate from composite action goal attainment which will be

The schema selected for activation determines what action
the learning agent will take. The method used by the schema
mechanism to select schemas for activation is rather com-

plex; many factors are taken into account and DreSCherdoesdiscus:sed in in the section on composite actions. Further

not explicitly give their relative importance. A confound- o, 0 h46i0n is given in the following two sections and the
ing issue is that schemas witomposite actionalso select E‘%h _level seudocode ca be foun

e . A . Iq in Fi

schemas for activation. A composite action is a high-level al Purs During goa pursu|tt eim rtance value of
action with acontroller that repeatedly selects actions until  a schema i |5 based on tpeimitive, instrumental anddel-
its goal is fulfilled. Composite actions and controllers will  egatedvalue of the items in its result. Primitive value is
be explained in detail later. given to primitive items that are always useful to the learn-

As previously stated, the schema mechanism alternatesing agent. Examples include having an object centered in
between the broad activities of exploration and goal pursuit, the fovea and having the hand touch an object. Instrumental
both of which will be explained in more detail in the fol-  value is given to items which are useful for achieving other
lowing two sub-sections. During both activities, a schema things of value. Schemas that reliably chain to schemas with
is selected for activation at each time step by the high-level high value are given instrumental value. Instrumental value
selection mechanism. If a schema with a composite action is only used during high-level goal pursuit, so it is not per-
is selected, then the composite action’s controller selects the sistent because it depends on the current goal. Delegated
actual schema to be activated. The controller continues to value is like instrumental value except that it is persistent.
select the schema to be activated at each time step as long ado calculate delegated value, at each time step, the schema
the composite action itself is still selected by the high-level mechanism calculates the highest valued item that can be
mechanism at each time step. If that composite action con- reached by a reliable chain of schemas starting with an appli-
troller in turn selects a schema with a composite action, then cable schema. For each item the schema mechanism keeps
its controller selects the schema to be activated, and so on. track of the average value of the highest value item reachable
Thus, there can be multiple levels of activation, but only one when the item i©nand when it iOff. If this value is higher
schema is actually activated at each time step. when the item iOn compared withOff then the item gets

Schemas are chosen based on activation importance positive delegated value, and it gets negative delegated value
within the exploration and goal pursuit activities. Within  if the value is higher whe®ff thenOn. Delegated value did
both activities a schema is chosen for activation randomly not play a large part in Drescher’s implementation because
from those close to the maximum importance value, and the learning agent was at such a primitive level that there



were no interesting things worth achieving. However, del- | yppATE-RESULT-STATISTICS
egated value would take on importance in a more advanced | receives: schems itemi, action takers
implementation because it would allow the learning agent to

assign value to synthetic items. e s.count(Atila) is the number of times for schemhat
. . . _ item i turnedOn when actiona was taken {a is not
Exploration During exploration the schema mechanism taken) (i indicates turnedOff)

seeks to learn about its world as opposed to trying to achieve
certain goals, and mainly uses the concepts of hysteresis| . .
and habituation to choose schemas for activatidystere- if s is not barethen

sis promotes repetition of a small number of tasks and pro- return

vides a type of focus of attention. Schemas record their fre- | €ndif

quency of activation, and more frequently activated schemas | |€ts. = action from schema

are more likely to be selected for activation. This kind of if s, = a then

“rich get richer” scheme allows a kind of specialization and if the value of turnequnthen
could be used schema pruning (although pruning was not add 1 tos.count(A™ila)
implemented by DrescherHabituationallows the schema end if

mechanism to move on to activating other schemas after a if the value of turnedOff then
schema has been activated too many times. In addition, the add 1 tos.count(A~ila)
schema mechanism also tries to spread out activation among end if

actions. Finally, the schema mechanism identifies and pro- | €/S€
motes successive activation of inverse actions, meaning sit- if the value of turnedOnthen

uations in which if one action turns an itebm and then an- add 1 tos.count(ATi|-a)
other action turns iOff. This allows the schema mechanism _end if
to find schemas that are locally consistent. if the value of turnedOff then
add 1 tos.count(A~i|—a)
end if
Marginal Attribution end if

New schemas are created by besmun off from existing ) ) o
schemas. To spin off a new schema means to create a copy Figure 3: Pseudocode for Updating Result Statistics
of the existing schema and then to add the new item to its

context (context spinoff) or result (result spinoff). Initially ) .
there are only bare schemas with no context and no result, {0 be changed to eithén or Off when a schema contain-

but as learning progresses new schemas can be spun off fromind that action is activated than otherwise, a new schema
schemas that were themselves spun off. containing that action and result is spun off from that bare

Marginal attribution first finds results that may only be f;igingg‘it’;l%teggfitbsggest:hhirrﬁzglt g)rrti?:iszrt]gmiggatosnhi/n%(zfn-
slightly more likely after an action (result spinoff) than oth- 'tem, only nas p P P :
erwise, and spins off a new schema containing that result. The statistics kept for each item in the extended result of
This allows it to find results that may only occur in specific €aCch bare schema are the probability that the item tuired
contexts without knowing what those context are. Marginal given th"."t the action of the schem_a was taken d|V|.ded be the
attribution then hillclimbs by spinning off new schemas with probability that the item tume@n given that the action was

added context items eventually (it is hoped) culminating in no;[] taken, .?r:]d tthe analggm:s s(;[agsncc&lftf_.t S_n%for tatt_)zatre
a reliable schema (context spinoff). This hillclimbing works fSC temas_\pn ;ac '08% *’;‘”O@? enae rbesu litemne statistic
even in situations in which multiple context items are needed ortransttion from 0 Lnis given by

for a schema to be reliable because although the schema s.prob(A*i|a)/s.prob(ATi|-a)

mechanism only examines adding one context item at a time,

there will be many trials in which the other items will take  where
their necessary values by chance, causing the increased reli- ) , )
ability, even if )sllight, to bye noticed. A disgdvantage of this s.prob(ATila) = s.count(Ai[a) /s.activated
hillclimbing approach is that many intermediate, unreliable \yere the notatios.count(A*i|a) is the number of times

schemas are generated. Before a new schema is generateq{,rnedongiven that action for s was taken, anslactivated
there is check that it does not already exist, but the schema 5 the number of times that actianfor s was taken. The

mechanism has no garbage collection mechanism for unnec- equation fors.prob(A*i|-a) is analogous. Note that since
essary schemas, and such a mechanism would almost surely,ore schemas have no context items. a bare schésrian-

be needed in any realistic application. plicitly activated each time that its action is initiated by any
Result Spinoff Schemas with new result items are added other schema. The statistic for the transformation of item
by result spinoff. Recall that each schema maintains an ex- to Off is analogous, and the pseudocode for updating both
tended context and an extended result, both of which consist statistics is given in Figure 3.

of statistics for each item. When a particular item in the ex- ~ When this statistic for an iterhin schemas becomes
tended result of a bare schema is even slightly more likely greater than 1, then a new scheshis created with the same



action as schemaand itemi in the result ofs’. The pseu-
docode for this is given in Figure 4.

Drescher actually weights both context and result statis-
tics to more recent trials, but since this was an artifact of
his implementation (although arguably useful) it will not be
considered here.

To give an example, it may be that the door is more
likely to go from closed to open when th@penDoor
action was taken compared to when tBgenDoor ac-
tion was not taken, thug|OpenDoor|) would spin off
{|OpenDoor|DoorOpen).

One additional aspect is that the extended result of a
schema is not updated for items that are changed due to be-
ing in the result of a reliable schema that was just activated.

This keeps known causes from overshadowing other, possi-

RESULT-SPINOFF bly less robust, causes.

receives: schemg itemi

o s.count(Ai[a) is the number of times for scheraghat Context Spinoff Once the schema mechanism has created

item i turnedOn when actiona was taken {a is not
taken). A~i indicates turnedOff.)

a schema with a result, it then looks for context items to
make that result more reliable. When a particular item in
the extended context of a schema is found to make a schema

s.activated is the number of times that the action for  more reliable, then a new schema is spun off with that item
schema was taken added to its context. Two statistics are kept for each item in
totalActivations is the total number of actions taken by ~ the extended context of each schema. The firstis the ratio of

the system

if sis not barghen
return
end if
let s.notActivated = totalActivations - s.activated
let prob(ATi|a) = s.count(ATi|a)/s.activated
let prob(ATi|—a) = s.count(ATi|—a)/s.notActivated
let prob(A~i|a) = s.count(A~i|a)/s.activated
let prob(A~i|—a) = s.count(A~i|—a)/s.notActivated
if prob(ATila)/prob(Ati|-a) > 1then
copy schematos’ and add result iter=On
CREATE-COMPOSITE-ACTION) *** Fig. 9 ***
end if
if prob(A~ila)/prob(A~i|—-a) > 1then
copy schematos’ and add result iter=Off
CREATE-COMPOSITE-ACTION{) *** Fig. 9 ***
end if

Figure 4: Pseudocode for Result Spinoff

the probability that the schema was successful given that the
item wasOnto the probability that the schema was success-
ful given that the item wa®ff. The second is the reciprical

of the first. The first statistic for iternof schemas is given

by

s.prob(success|i) /s.prob(success|i)
where

s.prob(success|i) = s.count(success|i)/s.count(i)

ands.count(success|i) indicates the number of times that
was successful wheirOn ands.count(i) is the number of
times that was activated wheirOn. The values fos where
i=Off are analagous. The pseudocode for updating these val-
ues is given in Figure 5. If the first statistic in in the extended
context of schemagoes above 1, then a new scheshaith

the added context itein= Onis spun off froms. Again, the
process for the success of the schema for wihisrOff is
analogous and the pseudocode for both is given in Figure 6.

Continuing the example, the schema mechanism
may find that standing in front of the door makes
(|OpenDoor|DoorOpen) more reliable and may spin off the
new schemgInFrontOfDoor|OpenDoor|DoorOpen). The
full pseudocode of the basic marginal attribution process is
given in Figure 7.

Embellishments to Marginal Attribution  In order to en-
sure that all correlations were found, and to tame the pro-
liferation of schemas, Drescher had to add some additional
constraints. One nice thing about the schema representa-
tion is that concepts that can be expressed with disjunctions
can be represented with multiple schemas, each with the
same action and same result but different contexts. However,
when expressing disjunctive concepts as multiple schemas,
the effect of some item values can be hidden. To counter-
act this and to help contain the proliferation of schemas,



UPDATE-CONTEXT-STATISTICS
receives: schems itemi

e s.count(i) is the number of times that schemwaas ac
tivated when item wasOn (analogous foOff)

e s.count(success|i) is the number of times that schem
was successful when itemvasOn (analogous foOff)

D

if s was activated (implicitly or explicitlyjhen
if i isOnthen
add 1 tos.count(i)
if s was successfuhen
add 1 tos.count(success|i)
end if
end if
if i is Off then
add 1 tos.count(—i)
if s was successfuhen
add 1 tos.count(success|—i)
end if
end if
end if

Figure 5: Pseudocode for Updating Context Statistics

CONTEXT-SPINOFF
receives: schemg itemi

e count(i) is the number of times that schemavas acti-
vated when itemwasOn (analogous foOff)

e s.count(success|i) is the number of times that schem
was successful when itemvasOn (analogous foOff)

e ¢, is the threshold for context spinoff

D

let prob(success|i) = s.count(success|i) / s.count(i)
let prob(success|—i) =s.count(success|—i) / s.count(—i)
if prob(success|i) / prob(success|—i) > 1 then

copy schematos’ and add context iterirOnto s’
end if
if prob(success|—i) / prob(success|i) > 1 then

copy schematos’ and add context iterixOff to s’
end if

Figure 6: Pseudocode for Context Spinoff

MARGINAL-ATTRIBUTION
receives: action

e s.activated is the number of times that the action corre-
sponding to schemawas taken.

*** Result Statistics and Spinoff ***
for every bare schenmado
if action fors = a then
add 1 to s.activated
end if
for every itemi do
UPDATE-RESULT-STATISTICi,a)
RESULT-SPINOFF;i)
end for
end for

*** Context Statistics and Spinoff ***
for every schemado
for every itemi do
UPDATE-CONTEXT-STATISTICSS,i)
CONTEXT-SPINOFF,i)
end for
end for

Figure 7: Pseudocode for Marginal Attribution

the marginal attribution mechanism defers to more specific
schemas. It works as follows. Suppose the schéjaia)
spins off a new schema with context itéroreating(i|a|r).

The embellishment then sets all of the the extended context
statistics in(|a|r) to 0, and when iterhis On (|a|r) does not
update its statistics. This means that whenOn (|a|r) de-
fers to(ijalr), and so if there is another context itg¢nmen it

will not be masked whehis On, and(|a|r) will recognize it
and be able to spin offj|a|r). Also, if context itemk is gen-
erally Onwheni is On, and improves the reliability of result
item r following actiona, then it need only be spun off of
(ila|r) to create(ik|a|r). Without deferring to the more spe-
cific schema(|a|r) would spin off (k|a|r). Thus, deference
also helps to avoid the explosion of schemas.

A second embellishment of context spinoff is if multiple
context items cross the threshdld at the same time then
the most specific one (the one thatOs with the smallest

Kegreta e Afitems Results of schemas only con-
tain one item. This is done to limit the explosive growth in
the number of schemas. However, the chaining mechanism
discussed in in the composite actions section can only find
linear chains, meaning that results from multiple schemas
cannot chain to one context. So, when a reliable schema has
a context with multiple items, those items are aggregated to
form one item in the extended result of all schemas. Thus,
a schema can only have a result with multiple items if those
items appear in the context of a reliable schema.



Override Conditions Sometimes, a schema needs an
override to specify that it is not reliable. To use the example
given by Drescher, assume that the reliable schésfx)

is not successful in the rare case when itenis On, and
(—wpla|x) is spun off. Note thafp|a|x) still exists and will

not be successful whemis On, so an override ofp|a|x) is
given whenw is on.

Synthetic Items

An important characteristic of the schema mechanism is that
it is able to add to its ontology and to represent states that
cannot be directly perceived. Recall that it does this by cre-
ating asynthetic itenfor any schema that is netliable and

is locally consistent The schema that spawns the synthetic
item is referred to as thieost schemaf the synthetic item.

A synthetic item represents the circumstances that enable its
host schema to be valid. For example, since doors that are
able to be opened tend to stay that way for a while, and those
that are locked tend to stay that way for a while, the unreli-
able and locally consistent schema

(InFrontOfDoor|OpenDoor|DoorOpen)
would spawn the synthetic item
[InFrontOfDoor|OpenDoor|DoorOpen]

that could be calledDoorUnlocked]. (Note that none
of these names mean anything to the schema mechanism

CREATE-SYNTHETIC-ITEM

e s.ck(success) is the number of times schersavas suc+
cessful during any window of timesteps since a su
cessful activation

s.ck(activation) is the number of times schemsawas
activated during any window dftimesteps since a su
cessful activation

s.count(success) is the total number of times schems
was successful

s.count(activation) is the total number of times scher
s was activated

Orel is the reliability threshold
6\ is the threshold for local consistency

° na

for every schemado
*** |f Not Reliable ***
if s.count(success)/s.count(activation) < 6, then
*** |f Locally Consistent ***
if s.ck(success)/s.ck(activation) > 6. then
make new synthetic iterfg]
add[s] to extended context and extended re
of every schema
end if
end if
end for

sult

the synthetic item could just as well have been called
SYMBOL14569.) Here, synthetic item names are enclosed
in square brackets. This means that our running example has
contained an abuse of notation; since its context and result
items both refer to high-level states and would therefore be
unlikely to be primitive in any implementation, our example
is written properly as

([InFrontOfDoor]||OpenDoor|[DoorOpen])

This nicely shows how the schema mechanism can build 3

increasingly higher levels of sophistication. The synthetic
item representing the state of the world in which the door
can be opened is now correctly represented as

[[InFrontOfDoor]|OpenDoor|[DoorOpenl]

4,

As with primitive items, a synthetic item can be added to
the result of some schema, and therefore the learning agent
could learn ways to make the synthetic item, and thus the
expected validity of its host schema, tudm or Off. Ad-
ditional features, such as seeing the latch in the crack of
the door in our example, could also be found that determine
whether or not the host schema is valid.

The values of the primitive items are given directly by the
sensory apparatus of the system, and muSier Off. The
values of the synthetic items may baknownin addition to
Onor Off, and are given by the following four sources:

1. Host schema trialWhen the host schema is activated, the
synthetic item is given a value @nif it is successful and
Off otherwise.

Figure 8: Pseudocode for Creating Synthetic Items

2. Augmented context conditioné. host schema may spin

off a new schema that becomes reliable. A reliable
schema must report its applicability to the schema that
spun it off. If this reliable schema becomes applicable
then the synthetic items for the parent schema is turned
On.

Predictions. If a synthetic item appears in the result of a
reliable schema, then if that schema is activated the syn-
thetic item is turnedDn if positively included andOff if
negatively included, unless there is evidence to the con-
trary.

Local consistencyWhen a synthetic item is turnedff

or On it stays that way for a period of time specified by
the duration of the host schema’s local consistency before
reverting toUnknown This of course means that every
unreliable schema must maintain the duration of its local
consistency, or alternatively, a standard time period could
be used.

The pseudocode for synthetic item creation is given in
Figure 8.

Composite Actions

A composite actiotis like a subroutine, or anption (Sut-

ton, Precup, & Singh 1999) in the reinforcement learning lit-
erature, it allows high-level actions to be performed. When
a bare schema spins off a schema that has a result that is



novel, meaning that no other schema has that result, then| cREATE-COMPOSITE-ACTION
a composite action is created with that result as its goal | recejves: newly created schema
state. The schema mechanism then creates a bare schema
with that composite action as its action, which allows the
schema mechanism to execute the action and to learn about
the results of achieving the composite action’s goal.

When a composite action is created;antroller for it is
created. A controller has a slot for each schema to record path distance fromfor every schema (controller will
the proximity of the schema to the goal state. When the periodically do BFS from to find path distances)
controller is first initialized it does a search for all chains end if
of reliable schemas that lead to the goal state and notes the
distance between each reliable schema and the goal. This ) ) )
can be accomplished by a breadth first search (BFS) starting ~ Figure 9: Pseudocode for Creating Composite Actions
from the goal state. Initially, all schemas that have that item

if resultr of s does not exist in any other schehan
create composite actian
create new bare schema with actiQn
create composite action controller that contains|the

and value in their result are chained to the goal, and then the SCHEMA-MECHANISM
BFS continues on all schemas that chain to the schemas that o o
chain to the goal. A schemsahains to schemd if the item- e totalActivations is the total number of activations
value pairs of the context ef are satisfied by the result item-
value pairs ofs. These reliable schemas that chain to the loop
goal state are called tkemponentsf the composite action. obtain snapshot of item values
A composite action ignabledwhen one of its components s «— SCHEMA-SELECTION
is applicable, and a composite action can only be selected s, < action ofs
for activation if it is enabled. When the composite action is executes,
activated the controller continuously activates the applicable add 1 tototalActivations
schema closest to the goal until the goal is achieved or until MARGINAL-ATTRIBUTION(s,)
the process times out. CREATE-SYNTHETIC-ITEM
Of course, when a composite action is first created, there | end loop
will be no schemas that chain to the result other than the

schemas,, which when spun off initiated the creation of
the composite action. Schemawill have no context and

S0 no schemas can chain to it. Thus initially, a compos-
ite action will not be enabled. However, the controller ini-
tiates backchaining search periodically, and when reliable
schemas are created that chain to the goal state they will be
found and the composite action will become enabled.

To continue with the current example, when
(|OpenDoor|) spins off (|OpenDoor|[DoorOpen]), if
[DoorOpen] is in the result of no other schema, then a com-
posite action is created that has as its goal the state of the

Figure 10: Pseudocode for the Schema Mechanism

cludes an item in the composite action’s goal. This is done
to reduce the number of redundant schemas created. The
general pseudocode for composite actions is given in Fig-
ure 9, and the high-level pseudocode for the entire schema
mechanism is given in Figure 10.

Achievements in the Microworld

door being open. Eventually, &€penDoor|[DoorOpen]) Drescher applied the schema mechanism to the microworld
spins off ([InFrontOfDoor]|OpenDoor|[DoorOpen]), or shown in Figure 1. The first schema learned was simple
other reliable schemas are created idborOpen] in their grasping,(|grasp|hcl). It learned schemas that represented

result, the controller will find these through backchaining. how shifting the learning agents glance moved objects in its
Thus, if the learning agent were not in front of the door visual field, e.g.(vf21|eyer|vf11). It also learned schemas
but wished to open the door, then the controller would for moving both its hand and its eye, e{gp22|eyeb|vp21).
successively activate the closest applicable schema until the Enough of each of these three sets of schemas were learned
door became open or the composite action timed out. to form a network for each behavior, so for example, a chain
Recall that a schema is implicitly activated if it is appli- of schemas could be found to move the hand from any posi-
cable and its action is taken due to the activation of another tion to any other position. Since a composite action is cre-
schema. Schemas with composite actions take this a stepated each time a schema is created with a novel result, the
further, such a schema is implicitly activated if it is appli- learning agent could then move the hand or eye to any posi-
cable and its goal state is achieved, even if that result had tion from any other position by chaining schemas. It could
nothing to do with the actions of the learning agent. This, also “move” an item in its visual field to any location in its
combined with the fact that the schema mechanism is more visual field.
likely to activate schemas that were recently activated due to  Additionally, schemas were learned for intermodal co-
hysteresis, provide the schema mechanism with a behavioral ordination. Schemas chained bp22 so that the learn-
tendency to imitate what happens in the environment. ing agent could “suck its thumb” using the schema
Note that one minor constraint is that a schema with a (hp22|handb|tastel). The schema mechanism also learned
composite action may not spin off a schema whose result in- what Drescher claimed were steps toward the concept of per-



sistent objects with such synthetic itemdjag23|tactl].

Evaluation of the Schema Mechanism
Strengths of the Schema Mechanism

Another disadvantage is that when chaining schemas the
context of one schema can only be satisfied by activating
a schema that has all of those item/value pairs in its re-
sult. The example given by Drescher is the goal of hav-
ing two blocks on a table. The schema mechanism will

The schema mechanism builds a model of how actions affect not know to activate the schema for putting one block on

the world by creating reliable schemas. A reliable schema is
created by finding a result that may be just slightly more
likely after an action than otherwise, and then hillclimbing
on context items to find situations in which the result reli-
ably follows the action. Perhaps one of the most important

the table twice, it will have to activate a schema that has
in its result two blocks on the table. Thus if we had an
item called(n)BOT meaningn blocks on the table, the fi-
nal schema of the chain would have to look something like
((n — 1)BOT|PutBlock|(n)BOT). Essentially, the chaining

aspects of the schema mechanism, however, is that it is able mechanism requires that at each link of the chain the context
to add features to the state space allowing a more compactof a schema in that chain must represent everything that has

representation of the environment.

been achieved so far; and since there is no parameterization

The schema mechanism learns an increasingly high-level in the schema mechanisim)BOT cannot exist, and there

representation by building alternating levels of synthetic

items and composite actions. For example, since the syn-

thetic item [DoorUnlocked] is treated like any other item,

it can be placed in the result of some schesray result
spinoff allowing a composite actiom to be created for it.
The composite action. would have its own controller that
would allow the learning agent to find chains of schemas that
lead to the state of the world in which the door is unlocked.
Additionally, a bare schemda.|) would be created, and if

it were found to be unreliable and locally consistent, it it-
self would become a synthetic item. This creates a kind of

scaffolding that the schema mechanism uses to continuously

climbs from synthetic items to composite actions.
If there aren binary state variables, then there afredif-

ferent states, which is far too many to be represented by any

type of DFA-based representation. An important observa-
tion is that for any particular action only a small number of

the state variables are important in determining the outcome

of that action. State representations used for DFAs, MDPs,

and POMDPs have no obvious way of representing these

“don’t care” conditions. The schema method of Drescher
avoids this difficulty by not representing whole states but in-
stead only important substates.

Another important advantage, as pointed out by Drescher,

would have to be a separate item for each number of blocks.
The Computational Complexity Problem We have seen
that the schema mechanism has some interesting proper-
ties and a potential to be a useful learning architecture;
however, the implementation proposed by Drescher is in-
tractable. Since the schema mechanism can continuously
create synthetic items and composite actions, the schema
mechanism continues to do so until it runs out of memory,
and at that point it can learn nothing further. In addition, the
amount of time taken for each action grows with the number
of schemas and items.

Drescher used a parallel architecture in his experiments,
however since serial computers are much more common it
is worth looking at the computational complexity of running
the schema mechanism on a serial computer. With respect to
time complexity, the biggest problems are marginal attribu-
tion, and the BFS used to find chains of schemas for instru-
mental value and the composite action controller. However,
since the BFS is not necessary on every action the focus for
time requirements will be on marginal attribution. Thévusa
implementation is given in Figure 7. If we letbe the num-
ber of schemas anibe the number of items then it takes
O(si) time.

that the schema method has over situation-action Iearning However we can do it faster if we break it up into two

(e.g. reinforcement learning) is that the schema method

learns continuously, as opposed to only when it happens to

hit upon an action that elicits a reward. Additionally, he also
points out that for situation-action learning that the current

loops as shown in figure Figure 11.

If we let is be the number of items that have changed
value,s; be the number of bare schemas, apbe the num-

goal, or some indicator of the current goal, must be incorpo- Per of schemas that contain actisthen we get a running

rated into the state, and that this increases the state space by

a multiplicative factor.

Weaknesses of the Schema Mechanism

ime that isO(syis + s4i), which is a great deal faster than
O(si). This is still a lot of work to do after each action, but
it may be manageable.

A far bigger problem is space complexity. Drescher said

The most obvious and important weakness of the schema that in his example run that the schema mechanism ran out

mechanism is computational complexity, this topic will be
discussed in the section on computational complexity. An-
other shortcoming is the inability for the schema mech-
anism to represent any form of generalization such as
(hp(x)(y)|handb|hp(x)(y — 1)). Drescher proposes a par-
tial solution to this problem in the form aofirtual general-
izations but it is not clear that this concept will eliminate
this problem. Virtual generalizations will be discussed fur-
ther in the section on possible future research directions.

of memory after creating just over seven thousand schemas.
Each composite action has a controller that stores a value for
each schema, but since most of the values in the composite
action controller will be blank because only a small percent-
age of schemas chain to any result, the space used due to
the composite action controller should be minimal. The real
issue is that each schema stores statistics for each item in
its extended context and extended result, thus the marginal
attribution machinery takes space®fsi).



FAST-MARGINAL-ATTRIBUTION
receives: action taken

*** Result Statistics and Spinoff ***
for every bare schemado
if action fors = a then
add 1 to s.activated
end if

UPDATE-RESULT-STATISTICi,a)
RESULT-SPINOFH;i)
end for
end for

*** Context Statistics and Spinoff ***
for every schemathat uses action do
for every itemi do
UPDATE-CONTEXT-STATISTICS,i)
CONTEXT-SPINOFF;i)

for every itemi that has just turne®n or Off do

text and result for the schema. The context consists of all
the vector context items whose value is greater than 0.9 (for
On) and less than 0.1 (fddff), the other items are not used.
The result consists of the vector result items whose value
has changed by more than 0.9 and bec@néf the change
was positive an@®ff if the change was negative, and again,
the other items are not used. Only schemas with at least one
result item are harvested.

Each harvested schema is then reified as a synthetic item
and a composite action is created for each result item that
appears in no other result as part of some schema. As in
Drescher, duplicate schemas are not created. The resources
of the current SOM level are then released and the training of
the next level begins by creating a SOM for each action in-
cluding the composite actions created in the previous level.
Additionally, the extended context and extended result rep-
resented in each node then contains weights for all the pre-
vious items plus the new synthetic items. When CLASM
was applied to the microworld of Drescher on a serial com-
puter it was able to learn the same schemas as were learned

end for f L .
end for in Drescher’s implementation.
Computational Advantages of CLASM CLASM is a
Figure 11: Pseudocode for Fast Marginal Attribution completely different way to do marginal attribution. It gen-

erates fewer unnecessary schemas because it eliminates the
trail of intermediate hill climbing schemas. Thus, a schema
with n context items can be added all at once as opposed to
Drescher’s implementation in which a chainmefschemas
would have to be created. Additionally, CLASM eliminates
many of the ad hoc methods that the schema mechanism uses
to limit schema growth. For example, there is no need to

Architecture Schema Mechanism (CLASM) (Chaput 2004). keep track of whether one schema is more specific than an-

CLASM is a system of self-organizing maps (SOMs) (Koho- other. . . L

nen 1995) is used to replace the marginal attribution mecha- N CLASM, the time complexity after each action is better

nism of the schema mechanism. than in Drescher’s implementation. Recall that in Drescher
In CLASM, a SOM is allocated for each primitive and it was inO(syis + Sﬂi). If i is the number of items; IS the

composite action so that there is a one-to-one mapping be- NUMber of schemas;, is the number of bare schemasis

tween SOMs and actions. For each SOM, the weight vector the number of items that have changed value, e the

of each node represents the extended context and extended!umper of schemas that contain actmrin_C_LASM since

result of the SOM's action and contains two times the num- &/l thatis necessary is to update a SOM, it i€J(t).

ber of items. To initialize the SOM, the extended context ~ With respect to space, the problem is a little more com-

items are initialized to be between 0 and 1 and the extended Plex. Recall that the schema mechanism takes space of

result items are initialized to be between -1.0 and 1.0 (Cha- O(si). CLASM creates a SOM for each action, and each
put does not say how exactly to initialize those values, we node of each SOM contains values for each item, but since

can assume that it is done by some standard method). its schemas do not have to maintain an extended context or

For training, when an action is taken that action’s SOM is  €xtended result, the space required i€)ts + ai). How-
trained on a vector consisting of the values of all the items V€T, i CLASM, since each harvested schema becomes a

before the action (extended context) and the change in the SYNthetic item, and many synthetic items are likely to end
values after the action (extended result). For the extended UP in the extended result of some schema causing a compos-
context, items that a®n are given a value of 1.0 and items ite action to be created, the number of actions may not be
thatOff are given a value of 0.0. (He does not specify what Much less than the number of schemas.
to do with Unknownbut we can assume that they are given Functional Differences Between CLASM and the
avalue of 0.5.) For the extended result, items that change to Schema Mechanism Although CLASM appears to be in
Onafter the action are given a value of 1.0, and those result some ways more efficient, there are some important differ-
items that change tOff are given a value of -1.0. ences in behavior between CLASM and Drescher’s imple-
Training continues until all the action SOMs have stabi- mentation. In CLASM, if a particular item always has the
lized. The SOMs are then harvested for schemas, which will same value©On for example, when an action is taken then
have the action of the SOM. When a node of a SOM be- the schemas created using that action will contain that item
comes a schema its weight vector is converted into a con- with valueOn, however in Drescher’s implementation they

Related Work on the Schema Mechanism
Replacing Marginal Attribution with SOMs

One method put forth to improve on the computational com-
plexity of the schema mechanism is the Cognitive Learning



FM-MARGINAL-ATTRIBUTION-INITIAL
receives: action taken

*** Update Statistics ***
for every schemado
if action fors = a and s is a bare schemten
add 1 to s.activated
end if
for every itemi that has changed vala®
UPDATE-RESULT-STATISTICi,a)
UPDATE-CONTEXT-STATISTICSK,i)
end for
end for

*** Parform Spinoff ***
for every schemathat uses action do
for every itemi do
RESULT-SPINOFF;i)
CONTEXT-SPINOFF;i)
end for
end for

Figure 12: Pseudocode for the Foner and Maes Marginal
Attribution Without Focus of Attention

will not because what is taken into account is the ratio of
success of the schema wh@n compared witlOff, and not
just the correlation. Also, in CLASM it is not necessary for
a group of items to be in the context of some schema in order
to have that set consisting of more than one item in the re-

FM-MARGINAL-ATTRIBUTION-FOA
receives: action taken

*** Update Statistics using Perceptual Selectivity **4
letis, be items that have changed in last two clock ticks
let ss» be the schemas containing itemsijn plus the
bare schemas
for every schemas, do
if action fors = a and s is a bare schemizen
add 1 to s.activated
end if
for every itemis, do
UPDATE-RESULT-STATISTICS;,,is2,a)
UPDATE-CONTEXT-STATISTICSs2,i50)
end for
end for

*** Perform Spinoff using Cognitive Selectivity ***
letis; be items that have changed in last clock tick
letss be schemas with items ig
for every schemas do
for every itemis do
RESULT-SPINOFFj,is)
CONTEXT-SPINOFF;.is)
end for
end for

Figure 13: Pseudocode for the Foner and Maes Marginal
Attribution With Focus of Attention

sult of some schema. In (Chaput 2004), value is propagated work during spinoff. For those loops they only consider

by using chaining, but it is not specified exactly how this is
done in the absence of a constraint on chains being linear.
In CLASM, all schemas are converted to synthetic items

once created as opposed to using Drescher’s criteria of be-

ing unreliable and locally consistent. CLASM was only run
for two levels, but in more complex environments this could
cause the number of synthetic items to overwhelm the sys-
tem. Additionally, as opposed to what was discussed in the
section on synthetic items, synthetic items are tur@ecbr

Off only based on the result of activating the host schema.
This may, however, have been due to expediency of imple-
mentation rather than on principle.

Reducing Computation with Focus of Attention

Another method put forth to reduce the computational com-
plexity of the schema mechanism is described in (Foner &
Maes 1994). It entails only performing the nested loops of
marginal attribution on a limited number of schemas and
items. They use the loop structure in Figure 12 as their ini-
tial baseline. They then reduce the amount of work in those
loops by using two principles to focus attention. To reduce
the work of updating the statistics, they use the principle of
perceptual selectivityFor updating statistics they only loop
on items that have had their value change in the last two
clock ticks, and only on schemas that contain those items.
They use the principle afognitive selectivityo reduce the

items which have changed in the last clock tick and only
consider schemas whose item statistics have changed in the
last clock tick. The pseudocode for marginal attribution us-
ing focus of attention is given in Figure 13.

They found that using focus of attention allowed the ac-
tions to be taken much faster than in théweaimplemen-
tation, but that it required about twice as many actions to
learn the same schemas. However, given that the time saved
increased as the robot learned more facts, they found that
using focus of attention was important.

From Figure 13 we see that their running time for
marginal attribution iSO (isoss52 + i58s5) Whereisy is the
number of items that have changed in last two clock ticks,
ss2 1S the number of schemas containing items that have
changed in the last two clock ticks plus the bare schemas,
is is the number of items that have changed in last clock
tick, ands; is the number of schemas with items that have
changed in the last clock tick. Recall from the section
on computational complexity that the running time for the
marginal attribution as shown in Figure 11 isNsyis +
sq1) if i is the number of items; is the number of schemas,
s is the number of bare schemagjs the number of items
that have changed value, asgis the number of schemas
that contain actiorn. We see that the computational com-
plexity of the pseudocode in Figure 11 could be reduced by
using focus of attention on the items to reduckom all



items toiss.

Schemas Compared with POMDPs and PSRs

A predictive state representation (PSR) (Littman, Sutton, &
Singh 2001) is defined as a settestseach consisting of a

some measures are taken to constrain the growth of synthetic
items. However, CLASM still uses memory proportional to
the number of actions times the number of items. One way
to reduce the memory under the CLASM framework would
be to limit the number of action SOMs using memory at

sequence of actions and observations that together provideany one time. One such scheme would be to only create an

sufficient information for a learning agent to know the re-
sults of all other possible tests. The state of the system is
represented as a vector of probabilities of seeing the pre-
dicted observations given that the actions of the tests were
performed. In (Littman, Sutton, & Singh 2001), it was
shown that any environment that can be represented with

action SOM the action corresponding to that SOM was exe-
cuted. The SOM could then stay in memory for some fixed

period of time and its resources could be released if the ac-
tion is not executed again in that time period.

Replace or Enhance the Schema Activation

a POMDRP can also be represented with a PSR, and further Mechanism

that the number of the tests of the PSR would not be larger
than the number of states of the POMDP.
In (Holmes & Isbell, Jr. 2005) a modified version of the

schema mechanism was compared with PSRs. They modi-

fied the schema mechanism by replacing the statistic for re-
sult spinoff

prob(ATi|a)/prob(ATi|-a)
with

count(ATi|a)

where count(ATi|a) is the number of times turned On
when actiona was taken (both analogous f@ff). They
kept the statistic for context spinoff the same with the ex-
ception that they anneal the threshold. For the creation of

synthetic items, they drop the requirement that the schema

be locally consistent and only require that the schema be un-
reliable. Additionally, they only use host schema trials and
predictions from reliable schemas to determine if a synthetic
item isOn or Off.

They found that their modified version of the schema
mechanism worked better than the original schema mech-
anism on the benchmark POMDPsftip, float/reset, and
modified float/reset; modified float/reset is equivalent to
float/reset except that thef action on the two right-most
states leads deterministically to their left neighbor.

Additionally, they found that the modified schema mech-

The method for determining which schemas to activate is
rather complex. Since the publication of Drescher’'s book
this issue of intrinsic motivation has received a great deal of
attention. For example, in (Oudeyetral. 2005) through the
method of Intelligent Adaptive Curiosity (IAC), the robot
constantly seeks to explore in the area where it can learn the
most. It avoids areas that are far too difficult and areas with
which itis already familiar to find the part of its environment
that enables the most learning. Something similar could be
employed in the schema mechanism by using the reliability
of the schema to affect its chances for activation. Schemas
that are moderately reliable could be favored over very reli-
able or very unreliable schemas.

Virtual Generalizations

The schema mechanism has no way of representing gen-
eralizations such ap(x)(y)|handb|hp(x)(y — 1)). How-
ever, Drescher proposes using canonical frames of reference
which he refers to agirtual generalizationsThis is similar
to how deictic references are used in (Ballatcal. 1996),
and also is similar to finding islands in state space search in
classical artificial intelligence.

For example, to move an object forward with the hand
the learning agent can center the object in the fovea by

anism was as accurate as PSRs on some of the POMDPs™Moving its glance and then always use always the schema

from (Singhet al. 2003). Of special note is that the modi-

(hgré&evf22&SeeHand@32|handf|vf23) whereSeeHand @32

fied schema mechanism took no more than 30,000 steps oniS the conjunction of items associated with seeing the hand

any POMDP for sufficient learning, which was vastly fewer
than the 1-10 million timesteps needed to learn the PSR pa-
rameters (Singket al. 2003).

at that glance-relative position. This use of virtual general-
izations is not an explicit capability that must be built into
the system, but rather it can emerge in a sufficiently sophis-

These results appear to show that the schema mechanisnficated implementation due to the instrumental value of hav-

(at least in modified form) is equivalent in representational
power to the established method of POMDPs. However, the
schema mechanism was not designed for such artificial envi-
ronments with such a high amount of state ambiguity. There-
fore, the schema mechanism’s next important milestone may
come from an implementation that allows it to learn some-
thing useful in a more realistic environment. Such possibili-
ties for future work will be discussed in the next section.

Possible Future Research Directions

Improve on CLASM

CLASM appears does a good job of limiting the amount
of work that must be done after each action, especially if

ing an object in the fovea.

Conclusion

The schema mechanism has shown potential to be a viable
robot learning system. Given that proof of concept imple-
mentations that have been achieved in very simple environ-
ments, a logical next step is to implement the schema mech-
anism in a more complex environment where it can learn to
do interesting things. Although much work has been done
on alleviating the burden of computational complexity, more
progress is needed. Additionally, an implementation in a
larger environment would almost certainly require that more
tradeoffs, such as focus of attention and keeping a limited



number of actions in memory, be explored. However, con-
sidering recent work by (Chaput 2004) and (Holmes & Is-

bell, Jr. 2005), momentum seems to be building, and such
an implementation may be undertaken in the not so distant
future.
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