
A Critical Overview of the Schema Mechanism and Related Work

Jonathan Mugan

CS395T Intelligent Robotics
May 11, 2005

Introduction
The schema mechanism (Drescher 1991) enables a learn-
ing agent to construct a representation of how actions affect
its environment. The schema mechanism is a an example
of a constructivistAI system. In such a system, the learn-
ing agent begins only with very basic knowledge of its sen-
sors and effectors and through interaction with its environ-
ment incrementally builds increasingly sophisticated behav-
iors. Constructivism traces its roots back the the develop-
mental psychologist Jean Piaget (1952; 1954) who postu-
lated a theory of development in which intelligence is built
up in stages, with each stage building on the previous one.
The schema mechanism is designed to serve as both a test of
Piaget’s theory, and as a possible framework for constructing
artificial intelligence.

This paper will provide a detailed explanation of the
schema mechanism from the perspective of an implemen-
tation on a serial computer. The strengths and weaknesses
of the schema mechanism as a potential robot learning and
control mechanism will be discussed, and related work on
the schema mechanism will be surveyed. Finally, some di-
rections for future work will be explored.

The Schema
The central organizing structure of the schema mechanism
is theschema. A schema is a triple that consists of acontext,
action, andresult. A schema is not a production rule, it does
not say what action should be taken in a particular situation,
but rather it states what would happen, with some probabil-
ity, if a particular action were taken in a particular situation.
An action is an event that can affect the state of the world.
The context and result of a schema consist of state elements
called items. Items are state elements that can take the val-
uesOn, when true,Off when false, orUnknown. A context
will contain one or more items designatedOn or Off , and a
result will generally contain only one item except in the spe-
cial case which will be discussed later. A schema’s context
is satisfiedif all of its context items have the specified val-
ues, and a schema isactivatedif its context is satisfied and
its action is taken. A schemas is said tosucceedif it is acti-
vated and its result item(s) take on their specified value after
activation, and it is said tofail otherwise. Each schema also
contains statistics forevery item, not just its context and re-
sult items, in itsextended contextandextended result. These

statistics are for creating new schemas. The reliability of a
schema is number of times it is successful divided by the
number of times it is activated, and is given by

Reliability = count(success)/count(activation)

A schema is said to bereliable if its reliability is above a
threshold. A schema isvalid if it would succeed if activated.

With respect to notation, schemas will be represented in
the form〈ab¬c|d|fg〉 wherea, b, andc are all context items,
the action isd, and the result items aref andg. All items are
considered to beOnunless preceded by a¬, thus in this case
c would beOff . Items with names longer than one character
will be separated by a&. Using the concrete, but high level
example from (Chaput 2004), the schema

〈InFrontOfDoor|OpenDoor|DoorOpen〉 (1)

would mean that if the learning agent were in front of the
door, and it took the action of opening the door, then the door
would be open. (Note that this example is at a much higher
level of abstraction than the schema mechanism has been
able to achieve, but it will be used throughout the discussion
because of its intuitive appeal.)

Two Key Ideas
The schema mechanism specifically addresses two funda-
mental challenges in building artificially intelligent systems.
The first is the challenge ofempirical learning: given that
the same action can have different effects in different situa-
tions, how can the learning agent learn which prerequisites
are necessary to cause particular action to lead to a particu-
lar result? It is clearly intractable to try all combinations of
prerequisites and actions to see which results follow; and a
compounding problem is that results are sometimes brought
about by causes other than those stemming from the learn-
ing agent’s actions. The schema mechanism’s solution to
this difficulty is to use a method calledmarginal attribution,
which breaks the problem into two parts. First, it finds re-
sults that follow actions if even with only slight reliability.
Then, for each action/result pair, it incrementally looks for
individual context items that increase the reliability of that
result following that action.

The second challenge isconcept invention: how can the
learning agent add novel concepts to its ontology? The
schema mechanism does this by finding schemas that are

not reliable and arelocally consistent. A schema is locally
consistent if its success from very recent activations is a
good predictor of subsequent success. Drescher gives no
explicit formulation of what it means to be locally consis-
tent, but a simple one would be to define it as the probabil-
ity of a successful activation, given a successful activation
in the lastk time steps, is above a threshold. To add new
concepts the schema mechanism creates asynthetic itemfor
such schemas, and these synthetic items can then be in the
context or result of any schema just like regular items. The
synthetic item isOnwhen its host schema would have a suc-
cessful activation and thus represents the unknown state of
the world that causes the host schema to be successful. If
the synthetic item isOn, then the host schema itself does
not have to be activated to find out if it would be successful.
This is important because it allows the schema mechanism
to represent states that are not visible to the learning agent.
In addition, since synthetic items can become part of the re-
sult for a schema, the schema mechanism can find ways to
turn themOnor Off .

The Schema Mechanism
Beginning the Learning Process
The schema mechanism begins with a set ofprimitive items,
which are items that correspond to both coarse sensory in-
put and proprioception that are updated automatically by the
system. The primitive items are always eitherOn or Off
(only synthetic items may have the valueUnknown). The
schema mechanism is also endowed with a set ofprimi-
tive actionsthat corresponds to simple movements, and each
such primitive action also serves as the action for a schema
with an empty context and an empty result, called abare
schema.

The sets of primitive items and primitive actions are user
defined. Initially, everything that the schema mechanism
knows about the world is expressed in the values of the
primitive items and the only actions that the learning agent
can take are the primitive actions. And, of course, the only
schemas available to the learning agent are the bare schemas.

Learning begins by activating schemas to observe their
results. Schemas compete for activation. The schema mech-
anism chooses schemas for activation while doing two fun-
damental activities: exploration and goal pursuit. There are
two types of activation for schemas,explicit activationand
implicit activation. Explicit activation is when a schema is
selected for activation and its action is initiated. Implicit ac-
tivation is when a schema’s context happens to be satisfied
and its action is initiated as part of activating some other
schema that contains the same action. Both types of activa-
tion are used for learning.

The Microworld
Drescher tested his version of the schema mechanism us-
ing the microworld as shown in Figure 1 (image taken from
(Chaput 2004)). This discussion of the microworld is pre-
sented here to give the reader a reference point that may
prove helpful for grounding the information in the follow-
ing sections.

Figure 1: The microworld

In the microworld the agent cannot move but is endowed
with ten primitive actions as given in Table 1. The hand can
move in four directions in a3 × 3 grid directly in front of
the agent and occupy positions(1, 1) to (3, 3) (in Figure 1
the hand is at position (2,1)). The agent can also move its
visual field in four directions within a3× 3 grid and occupy
positions(1, 1) to (3, 3). A good way to think about this is
that the agent can move its fovea, which is labeled “X” in
Figure 1, in the same3 × 3 grid as the hand (in Figure 1
the visual field is in position (1,3)). The learning agent can
grasp something if it is to the left of its hand and can also
ungrasp.

Table 1: Primitive Actions

handf move hand front
handb move hand back
handr move hand right
handl move hand left
eyef move eye front
eyeb move eye back
eyer move eye right
eyel move eye left
grasp grasp object left of hand
ungrasp open the hand

The primitive items endowed to the agent are given in
Table 2. The agent can know the position of its hand and
eye, and if its hand is closed and grasping something or just
closed. The hand has four items for touch on its four sides,
and four detail items for touch on its left side where its fin-
gers are. So, for example if the ball were to the left of the
hand, thentactl would beOnand so would the detail item(s)
for the ball. The body also has four items for touch, each on
one side. Similar to the hand, if there is something directly
in front of the body, then that item can be tasted. Note for
both the fingers and the tongue that24 different sensations
are possible. The eye has 25 course visual items, so that if
an object appears in that region then the corresponding item
is On. And finally, each of the four foveal regions has 16 de-
tail items for a total of216 different possible sensations for
each foveal region. Using the configuration in Figure 1 as an

Table 2: Primitive Items

hp11, ..., hp33 hand positions
vp11, ..., vp33 visual positions
tactf touching hand (front)
tactb touching hand (back)
tactr touching hand (right)
tactl touching hand (left)
text0..., text3 detail touching fingers
bodyf touching body (front)
bodyb touching body (back)
bodyr touching body (right)
bodyl touching body (left)
taste0, ..., taste3 taste (in front of body)
hcl hand closed
hgr hand closed and grasping
vf00, ..., vf44 course visual field items
fovf00, ..., fovf33 front foveal region
fovb00, ..., fovb33 back foveal region
fovr00, ..., fovr33 right foveal region
fovl00, ..., fovl33 left foveal region
fovx00, ..., fovx33 center foveal region

example, iftaste2 andtaste3 are triggered by the hand then
the itemshp21, vp13, vf41, bodyf, taste2 andtaste3 are all
On, and all other items areOff .

Selecting Schemas for Activation
The schema selected for activation determines what action
the learning agent will take. The method used by the schema
mechanism to select schemas for activation is rather com-
plex; many factors are taken into account and Drescher does
not explicitly give their relative importance. A confound-
ing issue is that schemas withcomposite actionsalso select
schemas for activation. A composite action is a high-level
action with acontroller that repeatedly selects actions until
its goal is fulfilled. Composite actions and controllers will
be explained in detail later.

As previously stated, the schema mechanism alternates
between the broad activities of exploration and goal pursuit,
both of which will be explained in more detail in the fol-
lowing two sub-sections. During both activities, a schema
is selected for activation at each time step by the high-level
selection mechanism. If a schema with a composite action
is selected, then the composite action’s controller selects the
actual schema to be activated. The controller continues to
select the schema to be activated at each time step as long as
the composite action itself is still selected by the high-level
mechanism at each time step. If that composite action con-
troller in turn selects a schema with a composite action, then
its controller selects the schema to be activated, and so on.
Thus, there can be multiple levels of activation, but only one
schema is actually activated at each time step.

Schemas are chosen based on activation importance
within the exploration and goal pursuit activities. Within
both activities a schema is chosen for activation randomly
from those close to the maximum importance value, and

SCHEMA-SELECTION
returns: schemas

if activity = goal pursuitthen
select schemas randomly from those close to the
maximum value, where schema value is based on a
combination of primitive and delegated value in the
schemas result, and added value for being an incom-
plete composite action in progress

else
select schemas randomly from those close to the
maximum value, where value is based on a combi-
nation of hysteresis, habituation, action equalization,
inverse action, and added value for being an incom-
plete composite action in progress

end if
if s is composite schemathen

return schema from composite action controller
else

returns
end if

Figure 2: Pseudocode to Select a Schema for Activation

to reduce thrashing, schemas are given added value if they
are composite actions in progress. During exploration, the
activation importance of schemas is based on what can be
learned; and during goal pursuit, activation is based on
reaching an explicit top-level goal. This explicit top-level
goal is designated by an item with a value. This is sepa-
rate from composite action goal attainment which will be
discussed in in the section on composite actions. Further
explanation is given in the following two sections and the
high-level pseudocode can be found in Figure 2.
Goal Pursuit During goal pursuit the importance value of
a schema is based on theprimitive, instrumental, anddel-
egatedvalue of the items in its result. Primitive value is
given to primitive items that are always useful to the learn-
ing agent. Examples include having an object centered in
the fovea and having the hand touch an object. Instrumental
value is given to items which are useful for achieving other
things of value. Schemas that reliably chain to schemas with
high value are given instrumental value. Instrumental value
is only used during high-level goal pursuit, so it is not per-
sistent because it depends on the current goal. Delegated
value is like instrumental value except that it is persistent.
To calculate delegated value, at each time step, the schema
mechanism calculates the highest valued item that can be
reached by a reliable chain of schemas starting with an appli-
cable schema. For each item the schema mechanism keeps
track of the average value of the highest value item reachable
when the item isOnand when it isOff . If this value is higher
when the item isOn compared withOff then the item gets
positive delegated value, and it gets negative delegated value
if the value is higher whenOff thenOn. Delegated value did
not play a large part in Drescher’s implementation because
the learning agent was at such a primitive level that there

were no interesting things worth achieving. However, del-
egated value would take on importance in a more advanced
implementation because it would allow the learning agent to
assign value to synthetic items.

Exploration During exploration the schema mechanism
seeks to learn about its world as opposed to trying to achieve
certain goals, and mainly uses the concepts of hysteresis
and habituation to choose schemas for activation.Hystere-
sispromotes repetition of a small number of tasks and pro-
vides a type of focus of attention. Schemas record their fre-
quency of activation, and more frequently activated schemas
are more likely to be selected for activation. This kind of
“rich get richer” scheme allows a kind of specialization and
could be used schema pruning (although pruning was not
implemented by Drescher).Habituationallows the schema
mechanism to move on to activating other schemas after a
schema has been activated too many times. In addition, the
schema mechanism also tries to spread out activation among
actions. Finally, the schema mechanism identifies and pro-
motes successive activation of inverse actions, meaning sit-
uations in which if one action turns an itemOnand then an-
other action turns ifOff . This allows the schema mechanism
to find schemas that are locally consistent.

Marginal Attribution

New schemas are created by beingspun off from existing
schemas. To spin off a new schema means to create a copy
of the existing schema and then to add the new item to its
context (context spinoff) or result (result spinoff). Initially
there are only bare schemas with no context and no result,
but as learning progresses new schemas can be spun off from
schemas that were themselves spun off.

Marginal attribution first finds results that may only be
slightly more likely after an action (result spinoff) than oth-
erwise, and spins off a new schema containing that result.
This allows it to find results that may only occur in specific
contexts without knowing what those context are. Marginal
attribution then hillclimbs by spinning off new schemas with
added context items eventually (it is hoped) culminating in
a reliable schema (context spinoff). This hillclimbing works
even in situations in which multiple context items are needed
for a schema to be reliable because although the schema
mechanism only examines adding one context item at a time,
there will be many trials in which the other items will take
their necessary values by chance, causing the increased reli-
ability, even if slight, to be noticed. A disadvantage of this
hillclimbing approach is that many intermediate, unreliable
schemas are generated. Before a new schema is generated
there is check that it does not already exist, but the schema
mechanism has no garbage collection mechanism for unnec-
essary schemas, and such a mechanism would almost surely
be needed in any realistic application.

Result Spinoff Schemas with new result items are added
by result spinoff. Recall that each schema maintains an ex-
tended context and an extended result, both of which consist
of statistics for each item. When a particular item in the ex-
tended result of a bare schema is even slightly more likely

UPDATE-RESULT-STATISTICS
receives: schemas, item i, action takena

• s.count(∆+i|a) is the number of times for schemas that
item i turnedOn when actiona was taken (¬a is not
taken) (∆−i indicatesi turnedOff)

if s is not barethen
return

end if
let sa = action from schemas
if sa = a then

if the value ofi turnedOn then
add 1 tos.count(∆+i|a)

end if
if the value ofi turnedOff then

add 1 tos.count(∆−i|a)
end if

else
if the value ofi turnedOn then

add 1 tos.count(∆+i|¬a)
end if
if the value ofi turnedOff then

add 1 tos.count(∆−i|¬a)
end if

end if

Figure 3: Pseudocode for Updating Result Statistics

to be changed to eitherOn or Off when a schema contain-
ing that action is activated than otherwise, a new schema
containing that action and result is spun off from that bare
schema. Note that since the result for a schema can only con-
tain one item, only bare schemas participate in result spinoff.
The statistics kept for each item in the extended result of
each bare schema are the probability that the item turnedOn
given that the action of the schema was taken divided be the
probability that the item turnedOngiven that the action was
not taken, and the analogous statistic forOff . So for a bare
schemas with actiona and extended result itemi the statistic
for transition fromOff to On is given by

s.prob(∆+i|a)/s.prob(∆+i|¬a)

where

s.prob(∆+i|a) = s.count(∆+i|a)/s.activated

where the notations.count(∆+i|a) is the number of timesi
turnedOngiven that actiona for s was taken, ands.activated
is the number of times that actiona for s was taken. The
equation fors.prob(∆+i|¬a) is analogous. Note that since
bare schemas have no context items, a bare schemas is im-
plicitly activated each time that its action is initiated by any
other schema. The statistic for the transformation of itemi
to Off is analogous, and the pseudocode for updating both
statistics is given in Figure 3.

When this statistic for an itemi in schemas becomes
greater than 1, then a new schemas′ is created with the same

RESULT-SPINOFF
receives: schemas, item i

• s.count(∆+i|a) is the number of times for schemas that
item i turnedOn when actiona was taken (¬a is not
taken). (∆−i indicatesi turnedOff .)

• s.activated is the number of times that the action for
schemas was taken

• totalActivations is the total number of actions taken by
the system

if s is not barethen
return

end if
let s.notActivated = totalActivations - s.activated
let prob(∆+i|a) = s.count(∆+i|a)/s.activated
let prob(∆+i|¬a) = s.count(∆+i|¬a)/s.notActivated
let prob(∆−i|a) = s.count(∆−i|a)/s.activated
let prob(∆−i|¬a) = s.count(∆−i|¬a)/s.notActivated
if prob(∆+i|a)/prob(∆+i|¬a) > 1 then

copy schemas to s′ and add result itemi=On
CREATE-COMPOSITE-ACTION(s′) *** Fig. 9 ***

end if
if prob(∆−i|a)/prob(∆−i|¬a) > 1 then

copy schemas to s′ and add result itemi=Off
CREATE-COMPOSITE-ACTION(s′) *** Fig. 9 ***

end if

Figure 4: Pseudocode for Result Spinoff

action as schemas and itemi in the result ofs′. The pseu-
docode for this is given in Figure 4.

Drescher actually weights both context and result statis-
tics to more recent trials, but since this was an artifact of
his implementation (although arguably useful) it will not be
considered here.

To give an example, it may be that the door is more
likely to go from closed to open when theOpenDoor
action was taken compared to when theOpenDoor ac-
tion was not taken, thus〈|OpenDoor|〉 would spin off
〈|OpenDoor|DoorOpen〉.

One additional aspect is that the extended result of a
schema is not updated for items that are changed due to be-
ing in the result of a reliable schema that was just activated.
This keeps known causes from overshadowing other, possi-
bly less robust, causes.

Context Spinoff Once the schema mechanism has created
a schema with a result, it then looks for context items to
make that result more reliable. When a particular item in
the extended context of a schema is found to make a schema
more reliable, then a new schema is spun off with that item
added to its context. Two statistics are kept for each item in
the extended context of each schema. The first is the ratio of
the probability that the schema was successful given that the
item wasOn to the probability that the schema was success-
ful given that the item wasOff . The second is the reciprical
of the first. The first statistic for itemi of schemas is given
by

s.prob(success|i)/s.prob(success|¬i)
where

s.prob(success|i) = s.count(success|i)/s.count(i)

ands.count(success|i) indicates the number of times thats
was successful wheni=On ands.count(i) is the number of
times thats was activated wheni=On. The values fors where
i=Off are analagous. The pseudocode for updating these val-
ues is given in Figure 5. If the first statistic in in the extended
context of schemas goes above 1, then a new schemas′ with
the added context itemi = On is spun off froms. Again, the
process for the success of the schema for wheni is Off is
analogous and the pseudocode for both is given in Figure 6.

Continuing the example, the schema mechanism
may find that standing in front of the door makes
〈|OpenDoor|DoorOpen〉more reliable and may spin off the
new schema〈InFrontOfDoor|OpenDoor|DoorOpen〉. The
full pseudocode of the basic marginal attribution process is
given in Figure 7.

Embellishments to Marginal Attribution In order to en-
sure that all correlations were found, and to tame the pro-
liferation of schemas, Drescher had to add some additional
constraints. One nice thing about the schema representa-
tion is that concepts that can be expressed with disjunctions
can be represented with multiple schemas, each with the
same action and same result but different contexts. However,
when expressing disjunctive concepts as multiple schemas,
the effect of some item values can be hidden. To counter-
act this and to help contain the proliferation of schemas,

UPDATE-CONTEXT-STATISTICS
receives: schemas, item i

• s.count(i) is the number of times that schemas was ac-
tivated when itemi wasOn (analogous forOff)

• s.count(success|i) is the number of times that schemas
was successful when itemi wasOn (analogous forOff)

if s was activated (implicitly or explicitly)then
if i is On then

add 1 tos.count(i)
if s was successfulthen

add 1 tos.count(success|i)
end if

end if
if i is Off then

add 1 tos.count(¬i)
if s was successfulthen

add 1 tos.count(success|¬i)
end if

end if
end if

Figure 5: Pseudocode for Updating Context Statistics

CONTEXT-SPINOFF
receives: schemas, item i

• count(i) is the number of times that schemas was acti-
vated when itemi wasOn (analogous forOff)

• s.count(success|i) is the number of times that schemas
was successful when itemi wasOn (analogous forOff)

• θc is the threshold for context spinoff

let prob(success|i) = s.count(success|i) / s.count(i)
letprob(success|¬i) = s.count(success|¬i) / s.count(¬i)
if prob(success|i) / prob(success|¬i) > 1 then

copy schemas to s′ and add context itemi=On to s′

end if
if prob(success|¬i) / prob(success|i) > 1 then

copy schemas to s′ and add context itemi=Off to s′

end if

Figure 6: Pseudocode for Context Spinoff

MARGINAL-ATTRIBUTION
receives: actiona

• s.activated is the number of times that the action corre-
sponding to schemas was taken.

*** Result Statistics and Spinoff ***
for every bare schemas do

if action fors = a then
add 1 to s.activated

end if
for every itemi do

UPDATE-RESULT-STATISTICS(s,i,a)
RESULT-SPINOFF(s,i)

end for
end for

*** Context Statistics and Spinoff ***
for every schemas do

for every itemi do
UPDATE-CONTEXT-STATISTICS(s,i)
CONTEXT-SPINOFF(s,i)

end for
end for

Figure 7: Pseudocode for Marginal Attribution

the marginal attribution mechanism defers to more specific
schemas. It works as follows. Suppose the schema〈|a|r〉
spins off a new schema with context itemi creating〈i|a|r〉.
The embellishment then sets all of the the extended context
statistics in〈|a|r〉 to 0, and when itemi is On 〈|a|r〉 does not
update its statistics. This means that wheni is On 〈|a|r〉 de-
fers to〈i|a|r〉, and so if there is another context itemj then it
will not be masked wheni is On, and〈|a|r〉 will recognize it
and be able to spin off〈j|a|r〉. Also, if context itemk is gen-
erallyOnwheni is On, and improves the reliability of result
item r following actiona, then it need only be spun off of
〈i|a|r〉 to create〈ik|a|r〉. Without deferring to the more spe-
cific schema,〈|a|r〉 would spin off〈k|a|r〉. Thus, deference
also helps to avoid the explosion of schemas.

A second embellishment of context spinoff is if multiple
context items cross the thresholdθc at the same time then
the most specific one (the one that isOn with the smallest
frequency) is spun off.Aggregating Context Items Results of schemas only con-
tain one item. This is done to limit the explosive growth in
the number of schemas. However, the chaining mechanism
discussed in in the composite actions section can only find
linear chains, meaning that results from multiple schemas
cannot chain to one context. So, when a reliable schema has
a context with multiple items, those items are aggregated to
form one item in the extended result of all schemas. Thus,
a schema can only have a result with multiple items if those
items appear in the context of a reliable schema.

Override Conditions Sometimes, a schema needs an
override to specify that it is not reliable. To use the example
given by Drescher, assume that the reliable schema〈p|a|x〉
is not successful in the rare case when itemw is On, and
〈¬wp|a|x〉 is spun off. Note that〈p|a|x〉 still exists and will
not be successful whenw is On, so an override on〈p|a|x〉 is
given whenw is on.

Synthetic Items

An important characteristic of the schema mechanism is that
it is able to add to its ontology and to represent states that
cannot be directly perceived. Recall that it does this by cre-
ating asynthetic itemfor any schema that is notreliableand
is locally consistent. The schema that spawns the synthetic
item is referred to as thehost schemaof the synthetic item.
A synthetic item represents the circumstances that enable its
host schema to be valid. For example, since doors that are
able to be opened tend to stay that way for a while, and those
that are locked tend to stay that way for a while, the unreli-
able and locally consistent schema

〈InFrontOfDoor|OpenDoor|DoorOpen〉

would spawn the synthetic item

[InFrontOfDoor|OpenDoor|DoorOpen]

that could be called[DoorUnlocked]. (Note that none
of these names mean anything to the schema mechanism,
the synthetic item could just as well have been called
SYMBOL14569.) Here, synthetic item names are enclosed
in square brackets. This means that our running example has
contained an abuse of notation; since its context and result
items both refer to high-level states and would therefore be
unlikely to be primitive in any implementation, our example
is written properly as

〈[InFrontOfDoor]|OpenDoor|[DoorOpen]〉

This nicely shows how the schema mechanism can build
increasingly higher levels of sophistication. The synthetic
item representing the state of the world in which the door
can be opened is now correctly represented as

[[InFrontOfDoor]|OpenDoor|[DoorOpen]]

As with primitive items, a synthetic item can be added to
the result of some schema, and therefore the learning agent
could learn ways to make the synthetic item, and thus the
expected validity of its host schema, turnOn or Off . Ad-
ditional features, such as seeing the latch in the crack of
the door in our example, could also be found that determine
whether or not the host schema is valid.

The values of the primitive items are given directly by the
sensory apparatus of the system, and must beOnor Off . The
values of the synthetic items may beUnknownin addition to
Onor Off , and are given by the following four sources:

1. Host schema trial.When the host schema is activated, the
synthetic item is given a value ofOn if it is successful and
Off otherwise.

CREATE-SYNTHETIC-ITEM

• s.ck(success) is the number of times schemas was suc-
cessful during any window ofk timesteps since a suc-
cessful activation

• s.ck(activation) is the number of times schemas was
activated during any window ofk timesteps since a suc-
cessful activation

• s.count(success) is the total number of times schemas
was successful

• s.count(activation) is the total number of times schema
s was activated

• θrel is the reliability threshold

• θlc is the threshold for local consistency

for every schemas do
*** If Not Reliable ***
if s.count(success)/s.count(activation) < θrel then

*** If Locally Consistent ***
if s.ck(success)/s.ck(activation) > θlc then

make new synthetic item[s]
add [s] to extended context and extended result
of every schema

end if
end if

end for

Figure 8: Pseudocode for Creating Synthetic Items

2. Augmented context conditions.A host schema may spin
off a new schema that becomes reliable. A reliable
schema must report its applicability to the schema that
spun it off. If this reliable schema becomes applicable
then the synthetic items for the parent schema is turned
On.

3. Predictions.If a synthetic item appears in the result of a
reliable schema, then if that schema is activated the syn-
thetic item is turnedOn if positively included andOff if
negatively included, unless there is evidence to the con-
trary.

4. Local consistency.When a synthetic item is turnedOff
or On it stays that way for a period of time specified by
the duration of the host schema’s local consistency before
reverting toUnknown. This of course means that every
unreliable schema must maintain the duration of its local
consistency, or alternatively, a standard time period could
be used.

The pseudocode for synthetic item creation is given in
Figure 8.

Composite Actions
A composite actionis like a subroutine, or anoption (Sut-
ton, Precup, & Singh 1999) in the reinforcement learning lit-
erature, it allows high-level actions to be performed. When
a bare schema spins off a schema that has a result that is

novel, meaning that no other schema has that result, then
a composite action is created with that result as its goal
state. The schema mechanism then creates a bare schema
with that composite action as its action, which allows the
schema mechanism to execute the action and to learn about
the results of achieving the composite action’s goal.

When a composite action is created, acontroller for it is
created. A controller has a slot for each schema to record
the proximity of the schema to the goal state. When the
controller is first initialized it does a search for all chains
of reliable schemas that lead to the goal state and notes the
distance between each reliable schema and the goal. This
can be accomplished by a breadth first search (BFS) starting
from the goal state. Initially, all schemas that have that item
and value in their result are chained to the goal, and then the
BFS continues on all schemas that chain to the schemas that
chain to the goal. A schemas chains to schemas′ if the item-
value pairs of the context ofs′ are satisfied by the result item-
value pairs ofs. These reliable schemas that chain to the
goal state are called thecomponentsof the composite action.
A composite action isenabledwhen one of its components
is applicable, and a composite action can only be selected
for activation if it is enabled. When the composite action is
activated the controller continuously activates the applicable
schema closest to the goal until the goal is achieved or until
the process times out.

Of course, when a composite action is first created, there
will be no schemas that chain to the result other than the
schemasr, which when spun off initiated the creation of
the composite action. Schemasr will have no context and
so no schemas can chain to it. Thus initially, a compos-
ite action will not be enabled. However, the controller ini-
tiates backchaining search periodically, and when reliable
schemas are created that chain to the goal state they will be
found and the composite action will become enabled.

To continue with the current example, when
〈|OpenDoor|〉 spins off 〈|OpenDoor|[DoorOpen]〉, if
[DoorOpen] is in the result of no other schema, then a com-
posite action is created that has as its goal the state of the
door being open. Eventually, as〈|OpenDoor|[DoorOpen]〉
spins off 〈[InFrontOfDoor]|OpenDoor|[DoorOpen]〉, or
other reliable schemas are created with[DoorOpen] in their
result, the controller will find these through backchaining.
Thus, if the learning agent were not in front of the door
but wished to open the door, then the controller would
successively activate the closest applicable schema until the
door became open or the composite action timed out.

Recall that a schema is implicitly activated if it is appli-
cable and its action is taken due to the activation of another
schema. Schemas with composite actions take this a step
further, such a schema is implicitly activated if it is appli-
cable and its goal state is achieved, even if that result had
nothing to do with the actions of the learning agent. This,
combined with the fact that the schema mechanism is more
likely to activate schemas that were recently activated due to
hysteresis, provide the schema mechanism with a behavioral
tendency to imitate what happens in the environment.

Note that one minor constraint is that a schema with a
composite action may not spin off a schema whose result in-

CREATE-COMPOSITE-ACTION
receives: newly created schemas

if resultr of s does not exist in any other schemathen
create composite actionac

create new bare schema with actionac

create composite action controller that contains the
path distance fromr for every schema (controller will
periodically do BFS fromr to find path distances)

end if

Figure 9: Pseudocode for Creating Composite Actions

SCHEMA-MECHANISM

• totalActivations is the total number of activations

loop
obtain snapshot of item values
s← SCHEMA-SELECTION
sa ← action ofs
executesa
add 1 tototalActivations
MARGINAL-ATTRIBUTION(sa)
CREATE-SYNTHETIC-ITEM

end loop

Figure 10: Pseudocode for the Schema Mechanism

cludes an item in the composite action’s goal. This is done
to reduce the number of redundant schemas created. The
general pseudocode for composite actions is given in Fig-
ure 9, and the high-level pseudocode for the entire schema
mechanism is given in Figure 10.

Achievements in the Microworld
Drescher applied the schema mechanism to the microworld
shown in Figure 1. The first schema learned was simple
grasping,〈|grasp|hcl〉. It learned schemas that represented
how shifting the learning agents glance moved objects in its
visual field, e.g.〈vf21|eyer|vf11〉. It also learned schemas
for moving both its hand and its eye, e.g.〈vp22|eyeb|vp21〉.
Enough of each of these three sets of schemas were learned
to form a network for each behavior, so for example, a chain
of schemas could be found to move the hand from any posi-
tion to any other position. Since a composite action is cre-
ated each time a schema is created with a novel result, the
learning agent could then move the hand or eye to any posi-
tion from any other position by chaining schemas. It could
also “move” an item in its visual field to any location in its
visual field.

Additionally, schemas were learned for intermodal co-
ordination. Schemas chained tohp22 so that the learn-
ing agent could “suck its thumb” using the schema
〈hp22|handb|taste1〉. The schema mechanism also learned
what Drescher claimed were steps toward the concept of per-

sistent objects with such synthetic items as[|hp23|tact1].

Evaluation of the Schema Mechanism
Strengths of the Schema Mechanism
The schema mechanism builds a model of how actions affect
the world by creating reliable schemas. A reliable schema is
created by finding a result that may be just slightly more
likely after an action than otherwise, and then hillclimbing
on context items to find situations in which the result reli-
ably follows the action. Perhaps one of the most important
aspects of the schema mechanism, however, is that it is able
to add features to the state space allowing a more compact
representation of the environment.

The schema mechanism learns an increasingly high-level
representation by building alternating levels of synthetic
items and composite actions. For example, since the syn-
thetic item [DoorUnlocked] is treated like any other item,
it can be placed in the result of some schemas by result
spinoff allowing a composite actionac to be created for it.
The composite actionac would have its own controller that
would allow the learning agent to find chains of schemas that
lead to the state of the world in which the door is unlocked.
Additionally, a bare schema〈|ac|〉 would be created, and if
it were found to be unreliable and locally consistent, it it-
self would become a synthetic item. This creates a kind of
scaffolding that the schema mechanism uses to continuously
climbs from synthetic items to composite actions.

If there aren binary state variables, then there are2n dif-
ferent states, which is far too many to be represented by any
type of DFA-based representation. An important observa-
tion is that for any particular action only a small number of
the state variables are important in determining the outcome
of that action. State representations used for DFAs, MDPs,
and POMDPs have no obvious way of representing these
“don’t care” conditions. The schema method of Drescher
avoids this difficulty by not representing whole states but in-
stead only important substates.

Another important advantage, as pointed out by Drescher,
that the schema method has over situation-action learning
(e.g. reinforcement learning) is that the schema method
learns continuously, as opposed to only when it happens to
hit upon an action that elicits a reward. Additionally, he also
points out that for situation-action learning that the current
goal, or some indicator of the current goal, must be incorpo-
rated into the state, and that this increases the state space by
a multiplicative factor.

Weaknesses of the Schema Mechanism
The most obvious and important weakness of the schema
mechanism is computational complexity, this topic will be
discussed in the section on computational complexity. An-
other shortcoming is the inability for the schema mech-
anism to represent any form of generalization such as
〈hp(x)(y)|handb|hp(x)(y − 1)〉. Drescher proposes a par-
tial solution to this problem in the form ofvirtual general-
izations, but it is not clear that this concept will eliminate
this problem. Virtual generalizations will be discussed fur-
ther in the section on possible future research directions.

Another disadvantage is that when chaining schemas the
context of one schema can only be satisfied by activating
a schema that has all of those item/value pairs in its re-
sult. The example given by Drescher is the goal of hav-
ing two blocks on a table. The schema mechanism will
not know to activate the schema for putting one block on
the table twice, it will have to activate a schema that has
in its result two blocks on the table. Thus if we had an
item called(n)BOT meaningn blocks on the table, the fi-
nal schema of the chain would have to look something like
〈(n− 1)BOT|PutBlock|(n)BOT〉. Essentially, the chaining
mechanism requires that at each link of the chain the context
of a schema in that chain must represent everything that has
been achieved so far; and since there is no parameterization
in the schema mechanism,(n)BOT cannot exist, and there
would have to be a separate item for each number of blocks.
The Computational Complexity Problem We have seen
that the schema mechanism has some interesting proper-
ties and a potential to be a useful learning architecture;
however, the implementation proposed by Drescher is in-
tractable. Since the schema mechanism can continuously
create synthetic items and composite actions, the schema
mechanism continues to do so until it runs out of memory,
and at that point it can learn nothing further. In addition, the
amount of time taken for each action grows with the number
of schemas and items.

Drescher used a parallel architecture in his experiments,
however since serial computers are much more common it
is worth looking at the computational complexity of running
the schema mechanism on a serial computer. With respect to
time complexity, the biggest problems are marginal attribu-
tion, and the BFS used to find chains of schemas for instru-
mental value and the composite action controller. However,
since the BFS is not necessary on every action the focus for
time requirements will be on marginal attribution. The naı̈ve
implementation is given in Figure 7. If we lets be the num-
ber of schemas andi be the number of items then it takes
O(si) time.

However we can do it faster if we break it up into two
loops as shown in figure Figure 11.

If we let iδ be the number of items that have changed
value,sb be the number of bare schemas, andsa be the num-
ber of schemas that contain actiona then we get a running
time that isO(sbiδ + sai), which is a great deal faster than
O(si). This is still a lot of work to do after each action, but
it may be manageable.

A far bigger problem is space complexity. Drescher said
that in his example run that the schema mechanism ran out
of memory after creating just over seven thousand schemas.
Each composite action has a controller that stores a value for
each schema, but since most of the values in the composite
action controller will be blank because only a small percent-
age of schemas chain to any result, the space used due to
the composite action controller should be minimal. The real
issue is that each schema stores statistics for each item in
its extended context and extended result, thus the marginal
attribution machinery takes space ofO(si).

FAST-MARGINAL-ATTRIBUTION
receives: action takena

*** Result Statistics and Spinoff ***
for every bare schemas do

if action fors = a then
add 1 to s.activated

end if
for every itemi that has just turnedOnor Off do

UPDATE-RESULT-STATISTICS(s,i,a)
RESULT-SPINOFF(s,i)

end for
end for

*** Context Statistics and Spinoff ***
for every schemas that uses actiona do

for every itemi do
UPDATE-CONTEXT-STATISTICS(s,i)
CONTEXT-SPINOFF(s,i)

end for
end for

Figure 11: Pseudocode for Fast Marginal Attribution

Related Work on the Schema Mechanism

Replacing Marginal Attribution with SOMs

One method put forth to improve on the computational com-
plexity of the schema mechanism is the Cognitive Learning
Architecture Schema Mechanism (CLASM) (Chaput 2004).
CLASM is a system of self-organizing maps (SOMs) (Koho-
nen 1995) is used to replace the marginal attribution mecha-
nism of the schema mechanism.

In CLASM, a SOM is allocated for each primitive and
composite action so that there is a one-to-one mapping be-
tween SOMs and actions. For each SOM, the weight vector
of each node represents the extended context and extended
result of the SOM’s action and contains two times the num-
ber of items. To initialize the SOM, the extended context
items are initialized to be between 0 and 1 and the extended
result items are initialized to be between -1.0 and 1.0 (Cha-
put does not say how exactly to initialize those values, we
can assume that it is done by some standard method).

For training, when an action is taken that action’s SOM is
trained on a vector consisting of the values of all the items
before the action (extended context) and the change in the
values after the action (extended result). For the extended
context, items that areOnare given a value of 1.0 and items
thatOff are given a value of 0.0. (He does not specify what
to do withUnknownbut we can assume that they are given
a value of 0.5.) For the extended result, items that change to
On after the action are given a value of 1.0, and those result
items that change toOff are given a value of -1.0.

Training continues until all the action SOMs have stabi-
lized. The SOMs are then harvested for schemas, which will
have the action of the SOM. When a node of a SOM be-
comes a schema its weight vector is converted into a con-

text and result for the schema. The context consists of all
the vector context items whose value is greater than 0.9 (for
On) and less than 0.1 (forOff), the other items are not used.
The result consists of the vector result items whose value
has changed by more than 0.9 and becomeOn if the change
was positive andOff if the change was negative, and again,
the other items are not used. Only schemas with at least one
result item are harvested.

Each harvested schema is then reified as a synthetic item
and a composite action is created for each result item that
appears in no other result as part of some schema. As in
Drescher, duplicate schemas are not created. The resources
of the current SOM level are then released and the training of
the next level begins by creating a SOM for each action in-
cluding the composite actions created in the previous level.
Additionally, the extended context and extended result rep-
resented in each node then contains weights for all the pre-
vious items plus the new synthetic items. When CLASM
was applied to the microworld of Drescher on a serial com-
puter it was able to learn the same schemas as were learned
in Drescher’s implementation.

Computational Advantages of CLASM CLASM is a
completely different way to do marginal attribution. It gen-
erates fewer unnecessary schemas because it eliminates the
trail of intermediate hill climbing schemas. Thus, a schema
with n context items can be added all at once as opposed to
Drescher’s implementation in which a chain ofn schemas
would have to be created. Additionally, CLASM eliminates
many of the ad hoc methods that the schema mechanism uses
to limit schema growth. For example, there is no need to
keep track of whether one schema is more specific than an-
other.

In CLASM, the time complexity after each action is better
than in Drescher’s implementation. Recall that in Drescher
it was inO(sbiδ + sai) if i is the number of items,s is the
number of schemas,sb is the number of bare schemas,iδ is
the number of items that have changed value, andsa be the
number of schemas that contain actiona. In CLASM since
all that is necessary is to update a SOM, it is inO(i).

With respect to space, the problem is a little more com-
plex. Recall that the schema mechanism takes space of
O(si). CLASM creates a SOM for each action, and each
node of each SOM contains values for each item, but since
its schemas do not have to maintain an extended context or
extended result, the space required is inO(s + ai). How-
ever, in CLASM, since each harvested schema becomes a
synthetic item, and many synthetic items are likely to end
up in the extended result of some schema causing a compos-
ite action to be created, the number of actions may not be
much less than the number of schemas.

Functional Differences Between CLASM and the
Schema Mechanism Although CLASM appears to be in
some ways more efficient, there are some important differ-
ences in behavior between CLASM and Drescher’s imple-
mentation. In CLASM, if a particular item always has the
same value,On for example, when an action is taken then
the schemas created using that action will contain that item
with valueOn, however in Drescher’s implementation they

FM-MARGINAL-ATTRIBUTION-INITIAL
receives: action takena

*** Update Statistics ***
for every schemas do

if action fors = a and s is a bare schemathen
add 1 to s.activated

end if
for every itemi that has changed valuedo

UPDATE-RESULT-STATISTICS(s,i,a)
UPDATE-CONTEXT-STATISTICS(s,i)

end for
end for

*** Perform Spinoff ***
for every schemas that uses actiona do

for every itemi do
RESULT-SPINOFF(s,i)
CONTEXT-SPINOFF(s,i)

end for
end for

Figure 12: Pseudocode for the Foner and Maes Marginal
Attribution Without Focus of Attention

will not because what is taken into account is the ratio of
success of the schema whenOncompared withOff , and not
just the correlation. Also, in CLASM it is not necessary for
a group of items to be in the context of some schema in order
to have that set consisting of more than one item in the re-
sult of some schema. In (Chaput 2004), value is propagated
by using chaining, but it is not specified exactly how this is
done in the absence of a constraint on chains being linear.

In CLASM, all schemas are converted to synthetic items
once created as opposed to using Drescher’s criteria of be-
ing unreliable and locally consistent. CLASM was only run
for two levels, but in more complex environments this could
cause the number of synthetic items to overwhelm the sys-
tem. Additionally, as opposed to what was discussed in the
section on synthetic items, synthetic items are turnedOn or
Off only based on the result of activating the host schema.
This may, however, have been due to expediency of imple-
mentation rather than on principle.

Reducing Computation with Focus of Attention
Another method put forth to reduce the computational com-
plexity of the schema mechanism is described in (Foner &
Maes 1994). It entails only performing the nested loops of
marginal attribution on a limited number of schemas and
items. They use the loop structure in Figure 12 as their ini-
tial baseline. They then reduce the amount of work in those
loops by using two principles to focus attention. To reduce
the work of updating the statistics, they use the principle of
perceptual selectivity. For updating statistics they only loop
on items that have had their value change in the last two
clock ticks, and only on schemas that contain those items.
They use the principle ofcognitive selectivityto reduce the

FM-MARGINAL-ATTRIBUTION-FOA
receives: action takena

*** Update Statistics using Perceptual Selectivity ***
let iδ2 be items that have changed in last two clock ticks
let sδ2 be the schemas containing items iniδ2 plus the
bare schemas
for every schemasiδ2 do

if action fors = a and s is a bare schemathen
add 1 to s.activated

end if
for every itemiδ2 do

UPDATE-RESULT-STATISTICS(sδ2,iδ2,a)
UPDATE-CONTEXT-STATISTICS(sδ2,iδ2)

end for
end for

*** Perform Spinoff using Cognitive Selectivity ***
let iδ be items that have changed in last clock tick
let sδ be schemas with items iniδ
for every schemasδ do

for every itemiδ do
RESULT-SPINOFF(sδ,iδ)
CONTEXT-SPINOFF(sδ,iδ)

end for
end for

Figure 13: Pseudocode for the Foner and Maes Marginal
Attribution With Focus of Attention

work during spinoff. For those loops they only consider
items which have changed in the last clock tick and only
consider schemas whose item statistics have changed in the
last clock tick. The pseudocode for marginal attribution us-
ing focus of attention is given in Figure 13.

They found that using focus of attention allowed the ac-
tions to be taken much faster than in the naı̈ve implemen-
tation, but that it required about twice as many actions to
learn the same schemas. However, given that the time saved
increased as the robot learned more facts, they found that
using focus of attention was important.

From Figure 13 we see that their running time for
marginal attribution isO(iδ2sδ2 + iδsδ) where iδ2 is the
number of items that have changed in last two clock ticks,
sδ2 is the number of schemas containing items that have
changed in the last two clock ticks plus the bare schemas,
iδ is the number of items that have changed in last clock
tick, andsδ is the number of schemas with items that have
changed in the last clock tick. Recall from the section
on computational complexity that the running time for the
marginal attribution as shown in Figure 11 is inO(sbiδ +
sai) if i is the number of items,s is the number of schemas,
sb is the number of bare schemas,iδ is the number of items
that have changed value, andsa is the number of schemas
that contain actiona. We see that the computational com-
plexity of the pseudocode in Figure 11 could be reduced by
using focus of attention on the items to reducei from all

items toiδ2.

Schemas Compared with POMDPs and PSRs
A predictive state representation (PSR) (Littman, Sutton, &
Singh 2001) is defined as a set oftestseach consisting of a
sequence of actions and observations that together provide
sufficient information for a learning agent to know the re-
sults of all other possible tests. The state of the system is
represented as a vector of probabilities of seeing the pre-
dicted observations given that the actions of the tests were
performed. In (Littman, Sutton, & Singh 2001), it was
shown that any environment that can be represented with
a POMDP can also be represented with a PSR, and further
that the number of the tests of the PSR would not be larger
than the number of states of the POMDP.

In (Holmes & Isbell, Jr. 2005) a modified version of the
schema mechanism was compared with PSRs. They modi-
fied the schema mechanism by replacing the statistic for re-
sult spinoff

prob(∆+i|a)/prob(∆+i|¬a)
with

count(∆+i|a)
where count(∆+i|a) is the number of timesi turned On
when actiona was taken (both analogous forOff). They
kept the statistic for context spinoff the same with the ex-
ception that they anneal the threshold. For the creation of
synthetic items, they drop the requirement that the schema
be locally consistent and only require that the schema be un-
reliable. Additionally, they only use host schema trials and
predictions from reliable schemas to determine if a synthetic
item isOnor Off.

They found that their modified version of the schema
mechanism worked better than the original schema mech-
anism on the benchmark POMDPs offlip, float/reset, and
modified float/reset; modified float/reset is equivalent to
float/reset except that thef action on the two right-most
states leads deterministically to their left neighbor.

Additionally, they found that the modified schema mech-
anism was as accurate as PSRs on some of the POMDPs
from (Singhet al. 2003). Of special note is that the modi-
fied schema mechanism took no more than 30,000 steps on
any POMDP for sufficient learning, which was vastly fewer
than the 1-10 million timesteps needed to learn the PSR pa-
rameters (Singhet al. 2003).

These results appear to show that the schema mechanism
(at least in modified form) is equivalent in representational
power to the established method of POMDPs. However, the
schema mechanism was not designed for such artificial envi-
ronments with such a high amount of state ambiguity. There-
fore, the schema mechanism’s next important milestone may
come from an implementation that allows it to learn some-
thing useful in a more realistic environment. Such possibili-
ties for future work will be discussed in the next section.

Possible Future Research Directions
Improve on CLASM
CLASM appears does a good job of limiting the amount
of work that must be done after each action, especially if

some measures are taken to constrain the growth of synthetic
items. However, CLASM still uses memory proportional to
the number of actions times the number of items. One way
to reduce the memory under the CLASM framework would
be to limit the number of action SOMs using memory at
any one time. One such scheme would be to only create an
action SOM the action corresponding to that SOM was exe-
cuted. The SOM could then stay in memory for some fixed
period of time and its resources could be released if the ac-
tion is not executed again in that time period.

Replace or Enhance the Schema Activation
Mechanism

The method for determining which schemas to activate is
rather complex. Since the publication of Drescher’s book
this issue of intrinsic motivation has received a great deal of
attention. For example, in (Oudeyeret al. 2005) through the
method of Intelligent Adaptive Curiosity (IAC), the robot
constantly seeks to explore in the area where it can learn the
most. It avoids areas that are far too difficult and areas with
which it is already familiar to find the part of its environment
that enables the most learning. Something similar could be
employed in the schema mechanism by using the reliability
of the schema to affect its chances for activation. Schemas
that are moderately reliable could be favored over very reli-
able or very unreliable schemas.

Virtual Generalizations

The schema mechanism has no way of representing gen-
eralizations such as〈hp(x)(y)|handb|hp(x)(y − 1)〉. How-
ever, Drescher proposes using canonical frames of reference
which he refers to asvirtual generalizations. This is similar
to how deictic references are used in (Ballardet al. 1996),
and also is similar to finding islands in state space search in
classical artificial intelligence.

For example, to move an object forward with the hand
the learning agent can center the object in the fovea by
moving its glance and then always use always the schema
〈hgr&vf22&SeeHand@32|handf|vf23〉whereSeeHand@32
is the conjunction of items associated with seeing the hand
at that glance-relative position. This use of virtual general-
izations is not an explicit capability that must be built into
the system, but rather it can emerge in a sufficiently sophis-
ticated implementation due to the instrumental value of hav-
ing an object in the fovea.

Conclusion
The schema mechanism has shown potential to be a viable
robot learning system. Given that proof of concept imple-
mentations that have been achieved in very simple environ-
ments, a logical next step is to implement the schema mech-
anism in a more complex environment where it can learn to
do interesting things. Although much work has been done
on alleviating the burden of computational complexity, more
progress is needed. Additionally, an implementation in a
larger environment would almost certainly require that more
tradeoffs, such as focus of attention and keeping a limited

number of actions in memory, be explored. However, con-
sidering recent work by (Chaput 2004) and (Holmes & Is-
bell, Jr. 2005), momentum seems to be building, and such
an implementation may be undertaken in the not so distant
future.

References
Ballard, D. H.; Hayhoe, M. M.; Pook, P. K.; and Rao, R. P.
1996. Deictic codes for the embodiment of cognition.Be-
havioural and Brain Science.
Chaput, H. 2004.The Constructivist Learning Architec-
ture: A Model of Cognitive Development for Robust Au-
tonomous Robots. Ph.D. Dissertation, University of Texas
at Austin, Department of Computer Sciences. Also avail-
able as UT AI TR04-34.
Drescher, G. L. 1991.Made-Up Minds: A Constructivist
Approach to Artificial Intelligence. Cambridge, MA: MIT
Press.
Foner, L., and Maes, P. 1994. Paying attention to what’s
important: Using focus of attention to improve unsuper-
vised learning. InProceedings of the Third International
Conference on Simulation of Adaptive Behavior (SAB94).
Holmes, M. P., and Isbell, Jr., C. L. 2005. Schema learning:
Experience-based construction of predictive action models.
In Saul, L. K.; Weiss, Y.; and Bottou, L., eds.,Advances
in Neural Information Processing Systems 17. Cambridge,
MA: MIT Press. 585–592.
Kohonen, T. 1995.Self-Organizing Maps. Berlin; New
York: Springer.
Littman, M. L.; Sutton, R. S.; and Singh, S. P. 2001. Pre-
dictive representations of state. InNIPS, 1555–1561.
Oudeyer, P.-Y.; Kapalan, F.; Hafner, V.; and Whyte, A.
2005. The playground environment: Task-independent de-
velopment of a curious robot. InAAAI Symposium on De-
velopmental Robotics.
Piaget, J. 1952.The Origins of Intelligence in Children.
New York: Norton.
Piaget, J. 1954.The Construction of Reality in the Child.
New York: Ballantine.
Singh, S.; Littman, M. L.; Jong, N. K.; Pardoe, D.; and
Stone, P. 2003. Learning predictive state representations.
In Proceedings of the Twentieth International Conference
on Machine Learning.
Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Between
mdps and semi-mdps: A framework for temporal abstrac-
tion in reinforcement learning.Artif. Intell. 112(1-2):181–
211.

