
Handwritten Digit Recognition Using a
Hierarchical Bayesian Network

Jonathan Mugan
November 30, 2005

Abstract

Probabilistic methods provide one set of tools for building perceptual
systems. Lee and Mumford[2003] have recently put forth a Bayesian model
of visual perception that is based on electrophysiological observations of the
early visual neurons in monkeys. For this project a simplified version of the
Lee and Mumford model has been implemented in Matlab and tested on the
MNIST dataset of handwritten digits. This implementation performed poorly
on the dataset relative to other methods, but it shows promise in its ability to
scale to larger images. For comparison, nearest neighbor and recognition
using the eigenface approach were also implemented.

1 Introduction

1.1 An Ideal Observer Perception Model

The “Bayesian coding hypothesis”[Knill and Pouget, 2004] states that the human
brain uses probabilities and probability distributions to represent sensory informa-
tion. In Bayesian statistical decision theory, decisions that minimize Bayes error
are referred to as Bayes optimal. Within the study of perception, such Bayes opti-
mal observers are referred to as “ideal observers”[Geisler and Diehl, 2003]. Lee
and Mumford[2003] have recently proposed an ideal-observer model of the vi-
sual cortex. Their model has the structure of a hierarchical Bayesian network, with
each node performing Bayesian inference based on evidence from the nodes lower
in the hierarchy and background information from nodes higher in the hierarchy.
This inference at each node is represented by the equation

P (ωi|xO, xB) =
P (xO|ωi, xB)P (ωi|xB)

P (xO|xB)
(1)

whereωi is the state of nature (or in this case the feature produced by this node),
xO is the observation that comes from the nodes below, andxB is the background
or context information that comes from higher in the the hierarchy. For the leaf

1

nodes,xO comes directly from the environment (or in the case of the human visual
system the lateral geniculate nucleus (LGN)), and for intermediate nodesxO comes
from the level below.

1.2 Summary of the Implementation

For this project a simplified version of the Lee and Mumford model was imple-
mented in Matlab and tested on the MNIST handwritten digit dataset[LeCun and
Cortes, 1998]. The records in this dataset consist of greyscale images of size
28× 28; an example digit is shown in Figure 1. The results were somewhat disap-
pointing. It was able to correctly identify the handwritten digit about 44% of the
time. Both the nearest neighbor and the eigenface method that were implemented
for this project were able to correctly identify the handwritten digit better than
90% of the time, and the current best methods using specialized neural networks
and support vector machines are able to classify with greater than 99% accuracy
[LeCunet al., 1998].

Figure 1: An example handwritten digit from the MNIST dataset.

1.3 The Goal of this Implementation

The main objective of this project was not to accurately classify handwritten digits,
but rather to lay a groundwork for future research in feature acquisition. Of interest
is a model of feature learning that accounts for various phenomena of common
experience, such as the idea that features are not always noticed immediately, but
once they are noticed they are always seen, and the idea that experts in a domain
notice more features than non-experts.

2

One possibility is that analogous phenomena can be represented in a hierar-
chical generative model by incrementally adding discriminative ability to nodes as
experience is gained. If vector quantization is used throughout the hierarchy, then
every node has a finite set of states it can take, these states could then be the fea-
tures available for discrimination. The common experience of suddenly noticing
a new feature in the environment could correspond to adding a new code vector
to some node in the hierarchy. As humans, we notice more features as we gain
more experience, and this may account for why experts can make finer distinctions
than non-experts. Additionally, humans can also add distinctions if pointed out
by someone else. In the proposed model, when a code vector is added to a node
it is there permanently and from then on it can be identified in the scene and its
probabilities tracked.

An interesting possible research direction then is to devise a principled way
for adding code vectors to the hierarchy. The difficulty with feature leaning is that
there are an infinite number of possible features, the challenge then is to extract the
ones that are in some sense “useful.”

2 The Learning Algorithm

2.1 The Network Structure

The Bayesian network used for this project consists of four levelsA, B, C, and
I, as is shown in Figure 2. LevelI contains 16 vector-valued random evidence
variables. The handwritten digit images in the MNIST dataset are of size28 × 28,
and when the network is presented with a handwritten digit image, the image is
copied to levelI such that eachIij ∈ I is a vector of size7 × 7 = 49 and

⋃
ij Iij

covers the image with no overlap.
Level C contains 16 scalar random variables. The value of eachcij ∈ C is

a code vector index that approximates the received vectorIij . Similarly, levelB
contains 4 scalar random variables. The value of eachbi ∈ B is a code vector
index that approximates the vector formed by the received values of its children
〈ci1, ci2, ci3, ci4〉.

LevelA contains a vector-valued random variablea of size 10 that represents
the belief distribution of the correct identity of the current handwritten digit input.

2.2 The Learning Algorithm

The network is trained in stages from the bottom up. No learning occurs at levelI
as nodes at that level only partition the image and send it up to levelC.

3

a22

rrfffffffffffffffffffffffffffffffff99

yyttttttttttt [[

��8
88

88
88
kk

++WWWWWWWWWWWWWWWWWWWWWWWWWWW

b1::

zztttttttttt CC

����
��
��
� OO

��

[[

��7
77

77
77

b2::

zztttttttttt CC

����
��
��
� OO

��

[[

��7
77

77
77

b3CC

����
��
��
� OO

��

[[

��7
77

77
77
dd

$$JJJJJJJJJJ b4CC

����
��
��
� OO

��

[[

��7
77

77
77
dd

$$JJJJJJJJJJ

c11 c12 c13 c14 c21 c22 c23 c24 c31 c32 c33 c34 c41 c42 c43 c44

I11

OO

I12

OO

I13

OO

I14

OO

I21

OO

I22

OO

I23

OO

I24

OO

I31

OO

I32

OO

I33

OO

I34

OO

I41

OO

I42

OO

I43

OO

I44

OO

Figure 2: The Bayesian network.

2.2.1 Training LevelC

Each node at levelC performs two types of unsupervised learning. The first learn-
ing task is to discretize the space of input vectors received from its child in level
I. Based on the training data, this discretization is carried out individually at each
node inC, and at each node this discretization process determines the unique code
vectors whose indices form the possible values for its random variablecij . Two
different discretization methods were tried. The first was to usek-means with the
number of clusters determined by a parameterkc. The second was to use a self-
organizing map (SOM) of sized

√
kce × d

√
kce.1

The second learning task is to learn the probability mass functionsP (cij |xbij
),

wherexbij
is the vector〈cip, ciq, cir〉 wherep = j + 1 mod 4, q = i + 2 mod 4,

andr = i + 3 mod 4, and is simply the concatenation of the values of the other
random values inC whose nodes feed to the same node inB.

LearningP (cij |xbij
) was done using the nonparametric method outlined in

[George and Hawkins, 2005]. To approximateP (cij |xbij
), for eachcij ∈ C a

lookup tableTcij was created of sizek3
c × kc. The process then looped through the

training data, and for each training record,cij ∈ C was given the value of the index
of its node’s closest code vector toIij using Euclidean distance, andcij was passed
up to the node corresponding tobi. The node corresponding tobi then collected
inputs from its other children and passed backxbij

. At that point eachTcij [xbij
, cij]

was then incremented by 1. After the completion of this process,Tcij serves as an
approximation forP (cij |xbij

).

1Standard Matlab library functions were used for performingk-means and SOM processing, all
other processing was done by code written by me specifically for this project.

4

2.2.2 Training LevelB

Once levelC has been trained, it can be used to generate training samples for level
B. To do this, the original training data is processed again and this time each
node inC calculates the maximum likelihood estimatecij to pass to its parent
node. This is done by using a modified version of equation (1). If we assume that
the observation model does not depend on the background, then for each training
record

cij = argmaxcij
p(Iij |cij)p(cij |xbij

) (2)

wherep(Iij |cij) is approximated by 1 divided by the Euclidean distance between
Iij and the code vector associated withcij

2, andp(cij |xbij
) is approximated by

Tcij . Note that for each original training record, the node corresponding tobi sees
〈ci1, ci2, ci3, ci4〉 twice. The first time it only collects it and sends it back to its
children, and the second time it uses the updated〈ci1, ci2, ci3, ci4〉 as its training
record. Figure 3 shows a reconstruction of the handwritten digit in Figure 1 using
the code vectors corresponding the the indices inC during training ofB. Notice
that the reconstruction is not ideal, this will be discussed in Section 3.

Figure 3: The handwritten digit in Figure 1 reconstructed from the code vectors at
levelC.

Once the input to levelB has been generated, levelB is trained in the same
way as levelC. The process loops through the training data again, and for each
bi ∈ B its corresponding node discretizes the space of input vectors of the form
〈ci1, ci2, ci3, ci4〉 into kb code vectors using the same methods as in levelC. The
indices of these code vectors provide the set of possible values forbi. Also as
in level C, a tableTbi

of sizek3
b × kb populated by the same method asTcij is

populated.
2I tried approximatingp(Iij |cij) using a multivariate normal, butΣ was often nearly singular.

5

2.2.3 Training LevelA

LevelsC andB were trained in an unsupervised manner, however levelA is trained
in a supervised manner using the class labels of the handwritten digit training
records. The input vectors to levelA are generated in a similar way as the in-
put vectors into levelB are generated, except that Hamming distance is used at
levelB instead of Euclidean distance. LevelB generates training samples for level
A using appropriate variables in equation (2) and the input vectors provided to it
from levelC.

Since there are 10 digits to be identified, training at this level consists of popu-
lating the tableTa of sizek4

b × 10. As each vector of the formγ = 〈b1, b2, b3, b4〉
is received, the class labelω ∈ {0, 1, 2, 3, 4, 5, 7, 8, 9} is retrieved andTa[γ, ω] is
incremented by 1.

2.3 Inference

Generally, inference in such a network is done using loopy propagation[Pearl,
1988]. However, here, for simplicity, inference was done using a controlled looping
mechanism that has much in common with how the training samples at various
levels were generated. An unknown digit image is first partitioned by levelI and
then sent to levelC. Eachcij ∈ C is then populated with the index of the code
vector of its node that is closest toIij using Euclidean distance, and these values
are then passed to levelB. The nodes in levelB then collect the inputs from their
children and pass a vector containing those inputs back to each child. Each node
in C then uses equation (2) to pass up its revisedcij value. Eachbi ∈ B is then
populated with the index of the code vector of its node that is closest to the revised
input vector from its children using Hamming distance, and these values are passed
to levelA. The node at levelA then collects the values〈b1, b2, b3, b4〉 and passes
this vector back to each child. Each node inB then uses an equation equivalent to
equation (2) to pass up its revisedbi value.

Finally, levelA receives a vector〈b1, b2, b3, b4〉 and uses it to query tableTa.
The normalized row retrieved from tableTa becomes the value ofa. It then declares
the index with the highest value ina to be the label of the unknown image.

3 Results

This implementation was not able to accurately classify unseen handwritten digits.
The nearest neighbor and eigenface implementations both performed much better.
The results are listed in Table 1. The running times for each method are listed
in table Table 2. It is interesting to note that the SOM as a discretization method

6

Table 1: Percentage of Testing Data Correctly Classified (HB refers to hierarchical
Bayesian implementation)

10,000 train, 1000 test 1000 train, 1000 test
HB: k-means,kc = 7, kb = 7 28.2 36.0
HB: k-means,kc = 8, kb = 8 44.0 31.9
HB: k-means,kc = 9, kb = 9 42.5 32.6
HB: k-means,kc = 10, kb = 10 40.5 33.5
HB: SOMkc = 9, kb = 9 34.9 30.0
Nearest Neighbor,k = 1 92.0 82.8
Nearest Neighbor,k = 3 89.1 80.2
Eigenface method 91.1 81.6

Table 2: Running Time Comparison (HB refers to hierarchical Bayesian imple-
mentation)

10,000 train, 1000 test
HB: k-means,kc = 7, kb = 7 9 min. 27 sec.
HB: k-means,kc = 8, kb = 8 10 min. 25 sec.
HB: k-means,kc = 9, kb = 9 12 min. 17 sec.
HB: k-means,kc = 10, kb = 10 14 min. 48 sec.
HB: SOMkc = 9, kb = 9 96 min. 43 sec.
Nearest Neighbor,k = 1 19 min. 15 sec.
Nearest Neighbor,k = 3 73 min. 46 sec.
Eigenface method 7 min. 36 sec.

performed worse than usingk-means. Fork-means the running time increased as
kc andkb increased. This is most likely due to bothk-means itself taking more
time and the increase in size ofTcij , Tbi

, andTa. The memory taken up byTcij ,
Tbi

, andTa could become an issue with larger implementations, and some method
such as Parzen windows that does not store each value but instead approximates
areas of value may need to be employed.

Although nearest neighbor did well on this task, in general such an approach
does not scale well to larger images due to the curse of dimensionality. In the
high-dimensional case, preprocessing must be done to extract the relevant features
and reduce the dimensionality. An interesting outcome of the nearest neighbor
experiments is that it did better withk = 1 than withk = 3. Further investigation
showed that what was happening withk = 3 was that the closest neighbor was

7

often correct but was outvoted by the next two closest.
The method of using eigenfaces also did well. This is somewhat surprising,

since while centered faces are relatively similar to one another, handwritten digits
of different numbers, e.g. 1 and 8, are quite different. The first three eigenvectors
of the training data are shown in Figure 4. Notice that the eigenvectors, except for
the first one, do not look nearly as similar to numbers as eigenfaces look similar
to faces. Figure 5 shows the handwritten digit in Figure 1 reconstructed using
eigenvectors. This approach might be more applicable with this dataset if the digits
were first separated into classes and then the method was performed on each class.

Figure 4: First 3 eigenvectors taken from the handwritten digit training data.

Figure 5: Reconstruction of the digit in Figure 1 using 10, 100, and 600 eigenvec-
tors.

No explicit analysis of the variance was performed, and the value of 100 was
chosen arbitrarily for the number of eigenvectors to use. At such a high number of
eigenvectors this approach becomes similar to nearest neighbor, which may explain
why their results were so close to each other. Since the images were relatively
small, the trick outlined in[Turk and Pentland, 1991] was not necessary.

Thomas Dean[2005] implemented a more elaborate version of the Lee and

8

Mumford model. In his implementation he used the same number of levels but
used more nodes at each level. Notice that in Figure 3 the middle part is poorly
reconstructed. Having more nodes in this area would allow for a finer level of
representation. Dean uses 49 nodes at this first processing layer, as opposed to the
16 used here.

Additionally, in Dean’s implementation there was overlap in the area covered
by some nodes, meaning that some nodes had more that one parent. He also used
mixture-of-Gaussian classifiers at the lowest processing layer (corresponding to
level C) and EM in the intermediate layers, as as opposed to discretization viak-
means or SOM’s as was done here. This added complexity combined with the use
of Kevin Murphy’s Bayes Net Toolbox[Murphy, 2001] for inference allowed his
implementation to achieve accuracy of up to 81% on this dataset. His implementa-
tion, however, took up to 20 hours to run on 10,000 training records, whereas this
implementation generally finished in 20 minutes.

4 Conclusion

Although this implementation was not as successful as others at the task of clas-
sifying handwritten digits, it may still useful as a starting point for research. The
hierarchical and the distributed nature of the network could be leveraged to allow
the method to scale to larger images. The hierarchy allows the data to be viewed at
multiple levels of abstraction and the hierarchy can be expanded in depth and width
as the problem domain dictates. Additionally, the distributed nature of the message
passing algorithm allows for parallel computation. And, when one considers that
this is not a two class problem with an handful of features, but rather a ten class
problem with28 × 28 = 784 real-valued features, then 44% accuracy does not
seem as bad.

Another interesting aspect of this implementation is that most of the training
is unsupervised, it is only at the very top level that the class labels are used. This
implies that the system is learning general features of the data that are not restricted
to one learning task. In this way, this method is somewhat distinct from most
learning methods that learn for the purpose of a particular classification problem.
An interesting line of research, therefore, would be to create a methodology to add
new code vectors at appropriate levels as the system encounters more input and as
the system is tasked with new classification problems.

9

References

[Dean, 2005] Thomas Dean. Hierarchical expectation refinement for learning gen-
erative perception models. Technical Report CS-05-13, Brown University, Prov-
idence, RI, 2005.

[Geisler and Diehl, 2003] Wilson S. Geisler and Randy L. Diehl. A Bayesian ap-
proach to the evolution of perceptual and cognitive systems.Cognitive Science,
27(3):379–402, 2003.

[George and Hawkins, 2005] Dileep George and Jeff Hawkins. A hierarchical
Bayesian model of invariant pattern recognition in the visual cortex. InProc
of the International Joint Conference on Neural Networks (IJCNN 2005). IEEE
Computer Society, 2005.

[Knill and Pouget, 2004] D. C. Knill and A. Pouget. The Bayesian brain: the role
of uncertainty in neural coding and computation.Trends Neurosci, 27(12):712–
719, December 2004.

[LeCun and Cortes, 1998] Yann LeCun and Corinna Cortes. The MNIST database
of handwritten digits. http://yann.lecun.com/exdb/mnist, 1998.

[LeCunet al., 1998] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition.Proceedings of the IEEE,
86(11):2278–2324, November 1998.

[Lee and Mumford, 2003] Tai Sing Lee and D. Mumford. Hierarchical Bayesian
inference in the visual cortex.Journal of the Optical Society of America, 20,
2003, 1434-1448., 2003.

[Murphy, 2001] Kevin Murphy. The Bayes net toolbox for Matlab.Computing
Science and Statistics, 33, 2001.

[Pearl, 1988] Judea Pearl.Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1988.

[Turk and Pentland, 1991] M. Turk and A. Pentland. Eigenfaces for recognition.
Journal of Cognitive Neurosccience, 3(1):71–86, 1991.

10

