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Abstract— A developing agent must learn the structure of
its world, beginning with its sensorimotor world. It learns
rules to predict how its motor signals change the sensory
input it receives. It learns the limits to its motion. It learns
which effects of its actions are unconditional and which effects
are conditional, including what they depend on. We present
preliminary results evaluating an implemented computational
model of this important kind of foundational developmental
learning. Our model demonstrates synergy between the learning
of landmarks representing important qualitative distinctions,
and the learning of rules that exploit those distinctions to
make reliable predictions. These qualitative distinctions make it
possible to define discrete events, and then to identify predictive
rules describing regularities among events and the values of
context variables. The attention of the learning agent is focused
by a stratified model that structures the set of variables, and
the structure of the stratified model is simultaneously created
by the learning process.

Index Terms— developmental learning, sensorimotor learn-
ing, qualitative abstraction, predictive rules, landmark values

I. INTRODUCTION

A developing agent — human or robot — must learn the
structure of its world, beginning with its own sensorimotor
interaction. Even in an unknown environment, with unin-
terpreted sensors and effectors — what William James [1]
described as “blooming, buzzing confusion” — it must learn
to predict how its motor signals change the sensory input
it receives. It learns rules to make predictions. It learns the
limits to its motion. It learns which effects of its actions are
unconditional and which effects are conditional, including
what they depend on. And so on.

We present early results with an implemented computa-
tional model that shows how this learning process could be
structured. Important qualitative distinctions are identified,
and represented as landmarks in the ranges of continuous
variables. The landmarks allow rules to be learned to capture
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Fig. 1. A simulated “robot baby” is implemented in Breve [2]. It has a
torso with a 2-dof arm and is sitting in front of a tray with a block. The
robot has two motor variables ũx and ũy that move the hand in the x
and y directions, respectively. The perceptual system creates variables for
each of the two tracked objects in this environment: the hand and the block.
The variables corresponding to the hand are h̃x(t), h̃y(t), and ha(t). The
continuous variables h̃x(t), h̃y(t) represent the location of the hand in the
x and y directions, respectively, and the Boolean variable ha(t) represents
whether the hand is in view. The variables corresponding to the block are
b̃x(t), b̃y(t), and ba(t) and they have the same respective meanings as the
variables for the hand. When two objects are sufficiently close together the
perceptual system also creates variables to represent their relationship. The
relationship between the hand and the block is represented by the continuous
variables c̃x(t), c̃y(t), and ẽ(t). The variables c̃x(t) and c̃y(t) represent
the coordinates of the center of the hand in the frame of reference of the
center of the block, and the variable ẽ(t) represents the distance between
the hand and the block. The values of all variables are updated by perceptual
trackers at each timestep as the object moves. If the block disappears from
view by falling off the tray, then ba(t) = false.

significant regularities. Non-determinism in these rules allows
attention to be focussed on regions where new landmarks
can be learned to improve the predictions. And the new
landmarks, in turn, allow yet more rules to be learned.

This learning process is one stage in a longer develop-
mental learning sequence. We build on existing methods
for learning the structure of the sensorimotor system by
analyzing the statistical properties of disorganized elements
(“pixels”) of the agent’s sensory and motor vectors [3]–
[5]. We also assume that the agent has already learned to



individuate, track, and describe perceived objects in its visual
field, using the methods of Modayil and Kuipers [6], [7].

The agent’s only task is to learn progressively more reliable
rules to predict the effects of its actions on the objects
in its environment. By observing the success or failure of
these rules the unsupervised learning agent generates its own
supervisory signal.

Learning identifies predictive rules and adds contextual
conditions to increase reliability. In order to learn rules
robustly, the agent builds a stratified model, where the
variables it has characterized are organized into strata. It
starts with the built-in motor variables in the lowest stratum,
and then creates higher strata as determined by the rules
it learns. The stratified model focuses the attention of the
learning agent, so it can proceed greedily, building rules
with antecedent events involving variables already in the
model. Meanwhile, it infers a qualitative abstraction for the
range of each continuous variable, describing values in the
range in terms of landmark values, open intervals between
landmark values, and directions of change. An important part
of learning is to identify landmarks representing distinctions
that make the rules more reliable.

We evaluate the learning algorithm with a simulated “robot
baby” (Fig. 1). The agent’s only task is to learn to predict
future states in its environment. It learns how much force is
necessary to move its hand. It learns the limits of its hand
motion, and how to reliably move its hand within those limits.
It also learns reliable rules that in some situations allow it
to move its hand towards the block, and then to move the
block. These are essential first steps toward grasping and
manipulation of objects in its world.

The significance of this learning scenario is that the agent
learns the qualitative distinctions that allow reliable and
informative rules to be learned. The rules learned from these
distinctions then serve as a supervisory signal because the
agent can observe when they do and do not make correct
predictions. The agent can then use this supervisory signal
to make further distinctions, which in turn can lead to more
predictive rules. All learning takes place within a stratified
model that serves as a focus of attention and a mechanism
to reduce the number of rules learned.

We will first introduce the theory behind our method. We
then provide an evaluation, describing what the agent learns
in the simulated environment described in Fig. 1. Finally, we
will discuss related work and future directions of research.

II. KNOWLEDGE REPRESENTATION AND LEARNING

A cognitive learning agent (the “robot baby”) has access to
a number of continuous variables representing the interfaces
to sensory and motor processes associated with its body. In
our model, the learning agent can observe the continuous
values of its variables, and can collect certain limited kinds
of statistics, but it can only represent (i.e., store, match, and

retrieve) and do logical and causal inference with discrete
variables.

Therefore, a critical task for the “robot baby” is to learn ap-
propriate abstractions from continuous to discrete variables.
Initially, the values of the continuous variables are completely
meaningless. Our goal is for the agent to learn, from its
own undirected experience, to identify landmark values that
make important qualitative distinctions for each variable.
The importance of a qualitative distinction is estimated from
the reliability of the rules that can be learned, given that
distinction.

The qualitative representation is based on QSIM [8]. For
each continuous variable x̃(t) two discrete variables are
created: a discrete variable x(t) that represents the magnitude
of x̃(t), and a discrete variable ẋ(t) that represents the
direction of change of x̃(t). (Non-zero directions of change
that persist fewer than three time-steps are filtered out.)

A continuous variable x̃(t) ranges over some subset of the
real number line (−∞,+∞). In QSIM, its magnitude is ab-
stracted to a discrete variable x(t) that ranges over a quantity
space Q(x) of qualitative values. Q(x) = L(x)∪I(x), where
L(x) = {x1, · · ·xn} is a totally ordered set of landmark
values, and I(x) = {(−∞, x1), (x1, x2), · · · (xn,+∞)} is
the set of mutually disjoint open intervals in the real number
line that L(x) defines. A discrete variable ẋ(t) represent-
ing the direction of change of x̃(t) has a single intrinsic
landmark at 0, so its initial quantity space is Q(ẋ) =
{(−∞, 0), 0, (0,+∞)}. (Note that, for most magnitude vari-
ables, zero is just another point on the number line, so those
variables initially have no landmarks.)

Initially, when the agent knows of no meaningful qual-
itative distinctions among values for x̃(t), we describe the
quantity space as the empty list of landmarks, (). A quantity
space with two landmarks might be described by (x1, x2),
which implies five distinct qualitative values, Q(x) =
{(−∞, x1), x1, (x1, x2), x2, (x2,+∞)}. Table I and Fig. 1
give examples of the variables the learning agent knows
about, and their initial and final quantity spaces.

A. Events

An event E(t) is a qualitative change in the state of a
system that takes place at time-point t.

A transition At → a is an event defined by A(t− 1) 6= a
and A(t) = a. That is, a discrete variable A changes to value
a at time t, from some other value.

The only events we will consider here are transitions.
Our goal is to describe regularities in the occurrence of

events. These regularities are expressed as predictive rules.
There are two types of predictive rules: causal rules represent
that one event occurs after another later in time, the linking
of events appearing as causal to the agent; and functional
rules represent that two events are linked by a function and
so happen at the same time. These two rules differ only in the



time component, so after initially discussing them separately,
we will simply refer to both types as rules.

B. Causal Rules

A causal rule r has the form 〈C : E1 ⇒ E2〉, where E1(t)
is one event, say At → a, E2(t′) is another event over a
direction of change variable, say Bt′ → b, that takes place
relatively soon after t, and the context C is a set that can
consist of magnitude or Boolean variables.

We say that a causal rule r = 〈C : E1 ⇒ E2〉 applies at
time t when E1(t) is true. That E2 takes place “relatively
soon after” E1(t) is formalized in terms of a time-delay k.

soon(t, E2) ≡ ∃t′ [t < t′ < t+ k ∧ E2(t′)] (1)

A rule r = 〈C : E1 ⇒ E2〉 succeeds when:

succeeds(r, t) ≡ E1(t) ∧ soon(t, E2) (2)

Associated with a causal rule r = 〈C : E1 ⇒ E2〉 is a
probability distribution of the form

P (soon(t, E2)|E1(t) = true, C(t− 1)) (3)

which is the conditional probability distribution over the
binary random variable soon(t, E2), given that E1(t) is true,
conditioned on the values of the variables in C at time t− 1.

We define the entropy of a rule r = 〈C : E1 ⇒ E2〉 as the
conditional entropy of soon(t, E2) given C(t − 1), with the
added restriction that event E1(t) occurs. In equation form
it is given by

H(r) = H(soon(t, E2)|E1(t) = true, C(t− 1)). (4)

We are interested in learning rules that predict events,
but rule r can have low entropy if it predicts that E2 will
almost never follow E1, so a rule must have more than
low entropy to be useful. We define a concept called best
reliability represented as brel(r). For rule r, brel(r) is the
highest probability of success for any value of C. If C = ∅
then brel(r) is just the probability of success of r.

1) Learning a causal rule: The learner starts by searching
for two events E1 and E2 such that observing event E1 means
that event E2 is significantly more likely to occur than it
would have been otherwise.

The learner asserts an initial rule 〈∅ : E1 ⇒ E2〉 with
empty context, when P (soon(t, E2)|E1(t)) > 0.1 and

ι(P (soon(t, E2)|E1(t)), P (soon(t, E2))) > θa > 1 (5)

where the function on probabilities ι(p, q) = p
q ·

1−q
1−p has

been defined to have higher resolution near the extremes,
and lower resolution near the center, over the interval (0, 1)
of probability values. The parameter θa = 2.5 specifies how
much more likely E2 should be, after E1 has been observed.
(Here and elsewhere we require a minimum number of
relevant observations so the probability will be reliable.)

2) Learning a context for a functional rule: Once the
agent has learned a rule r = 〈∅ : E1 ⇒ E2〉, it searches for a
magnitude or Boolean variable v1 such that if r is modified to
be r′ = 〈{v1} : E1 ⇒ E2〉 the variable v1 provides sufficient
information gain H(r)−H(r′) > θig . The parameter θig =
0.15 determines how much information gain is required to
augment the context. If there are multiple discrete variables
that meet this criteria, then the one providing the largest
information gain is chosen.

Once it has learned a rule r′ = 〈{v1} : E1 ⇒ E2〉 the
agent searches for another magnitude or Boolean variable v2
such that if r′ is modified to be r′′ = 〈{v1, v2} : E1 ⇒ E2〉
the variable v2 provides sufficient information gain H(r′)−
H(r′′) > θig . In principle, an arbitrarily large context can be
learned, but in our current implementation, the size is limited
to 2.

This approach is inspired by the concept of marginal
attribution from Drescher’s schema mechanism [9]. However,
unlike Drescher and others, we reason with the entire set of
possible values of the set C of context variables, rather than
simply asserting a condition V = vj into the antecedent of a
particular rule.

C. Functional Rules

A functional rule r = 〈C : E1 ⇒ E2〉 has the same
form as a causal rule, and behaves in a similar way, with
three exceptions. The first difference is in the timing of
the events: the predicate soon(t, E2) is replaced with E2(t),
which means that the events E1 and E2 must happen in the
same timestep. The second difference is that functional rules
are only learned on events over direction of change variables.
And the third difference is because there is no time delay. If
a functional rule 〈C : E1 ⇒ E2〉 is learned but its opposite
〈C : E2 ⇒ E1〉 has a significantly higher rate of success
before the context is considered, then 〈C : E1 ⇒ E2〉 is
replaced by 〈C : E2 ⇒ E1〉 (although 〈C : E1 ⇒ E2〉 is
still used to build the stratification process as discussed in
SectionII-E). We will refer to both types of rules as predictive
rules or rules.

D. Landmarks for Predictive Rules

Inserting a new landmark x∗ into an open interval
(xi, xi+1) allows it to be replaced in Q(x) by two intervals
and the dividing landmark: (xi, x

∗), x∗, (x∗, xi+1). Adding
this new landmark into the quantity space Q(x) allows a new
distinction to be made that may transform a rule r into a new
rule r′.

If a landmark candidate for a rule r = 〈C : A→b ⇒ B→
b〉 is on variable A, then to be adopted the landmark must
increase the best reliability of r by transforming it into r′ so
that ι(brel(r′), brel(r)) > θa.

If the landmark candidate for r is on a variable other than
A, it must improve the entropy of r to be adopted. To do
this it must modify an existing variable in C or a variable



outside of C that can then be added to C so that r becomes
more deterministic by transforming it into r′ where H(r)−
H(r′) > θig .

Landmark candidates are chosen considering the width of
the interval and the highest gain [10] with respect to the
success of the rule. Depending on the relative gains of nearby
potential values for a new landmark x∗, this search can result
in either a precise numerical value, or a range of possible
values for x∗ on different occasions: range(x∗) = [lb, ub].
Examples of both cases are shown in Table I.

E. Learning the Stratified Model

The learning process organizes the discrete variables into
a stratified model, which serves as a focus of attention and
helps contain the proliferation of rules.

The learning agent starts with a set of continuous variables.
The motor variables {ũx, ũy} control the hand position. Per-
ceptual trackers deliver groups of continuous variables cor-
responding to the hand {h̃x, h̃y, ha}, the block {b̃x, b̃y, ba},
and the relation between the two {c̃x, c̃y, ẽ}. (See Figure 1
for a description of these variables.)

A stratum Si in the model at level i is a set of discrete
variables. A variable may be in at most one stratum and a
derivative variable ẋ is always included in the same stratum
as the variable x. The first stratum S0 is initialized with
the qualitative motor variables {ux, uy}, which have initial
intrinsic landmarks at 0. The remaining unstratified discrete
variables are available for rule-building.

From the current highest (or outermost) stratum Si and
each stratum below, the learning agent then repeatedly applies
the predictive rule and landmark learning methods until no
new rules or landmarks are generated. Once a new stratum
Si+1 is defined, the set of rules is pruned, and the process
repeats to build the next stratum.

Where Si is the current highest stratum, the learning
algorithm attempts to learn rules r = 〈C : A→a ⇒ B→b〉
starting with antecedent variables A in Sj where j ≤ i. When
searching for a suitable result event B→ b, it restricts its
attention to variables in Sj , variables in Sj+1, and variables
so far unstratified. A previously unstratified variable that
becomes the result variable B of a rule r = 〈C : A→a ⇒
B→b〉 where A ∈ Sj is added to Sj+1. And the other member
of a variable-derivative pair, 〈x, ẋ〉 is also added to Sj+1.

An exception is a functional rule 〈C : E2 ⇒ E1〉 that
is learned because it has a higher rate of success than 〈C :
E1 ⇒ E2〉. In this case for the purpose of stratification, the
rule 〈C : E2 ⇒ E1〉 is treated as if it were of the form
〈C : E1 ⇒ E2〉.

After a stratum Si is learned, the algorithm prunes the
model. Rules that have not become sufficiently deterministic
are pruned, where how deterministic a rule r = 〈C : A→a⇒
B→b〉 must be depends on the number n of variables in C.
Rule r is removed if H(r) ≥ 0.6 − (0.05n × θig). Rule r

TABLE I
VARIABLES, THEIR RANGES OF VALUES, AND INITIAL AND FINAL

LANDMARKS

Var. Range Initial Final Landmarks
ux [−500, 500] (0) (L1, 0, L2) L1 = −302.80
uy [−500, 500] (0) (L3, 0, L4) L2 = 302.23
hx [−2.0, 2.0] () (L5, L6) L3 = −305.10

ḣx (−∞, +∞) (0) (0) L4 = 302.50
hy [−2.0, 2.0] () (L7, L8) L5 = [−2.03,−1.99]

ḣy (−∞, +∞) (0) (0) L6 = [1.99, 2.04]
ha {0, 1} Binary Binary L7 = [−2.01,−1.99]
bx (−∞, +∞) () () L8 = [1.99, 2.01]

ḃx (−∞, +∞) (0) (0) L9 = −2.16
by (−∞, +∞) () () L10 = 2.00

ḃy (−∞, +∞) (0) (0) L11 = −1.68
ba {0, 1} Binary Binary L12 = 0.47
cx (−∞, +∞) () (L9, L10)
ċx (−∞, +∞) (0) (0)
cy (−∞, +∞) () (L11)
ċy (−∞, +∞) (0) (0)
e [0, +∞) () (L12)
ė (−∞, +∞) (0) (0)

is also removed if brel(r) ≥ 0.6. Of the remaining rules, if
there exist rules 〈E1 ⇒ E2〉, 〈E2 ⇒ E3〉, and 〈E1 ⇒ E3〉,
then 〈E1 ⇒ E3〉 is redundant and can be pruned.

If the pruning operation eliminates all rules pointing to
variables in some variable-derivative pair 〈x, ẋ〉 in Si, then
those variables are removed from Si.

III. EVALUATION

A. Simulation Scenario

The agent executed the learning algorithm on the simu-
lation shown in Fig. 1. The agent’s experience consisted of
405,000 timesteps where each timestep corresponded to 0.05
seconds. The agent alternated between gathering statistics
while experiencing the world and learning new rules and
landmarks. During each period of experience the agent began
with its motor variables set to 0 and would then motor babble
for 15,000 timesteps. During this time, if the block fell off
of the tray it was immediately moved to a random position
within reach of the agent. Since there are parts of the tray
that cannot be reached by the agent, if at any point the block
was not moved for 300 timesteps it was moved to a random
location within reach of the agent.

As the agent experiences the world it uses its current set
of landmarks to convert the continuous variables described in
the caption of Fig. 1 into discrete variables. These variables
include the variables ux and uy for controlling the hand, the
variables hx, hy , ḣx, ḣy , and ha that give the state of the
hand, the variables bx, by , ḃx, ḃy , and ba that give the state
of the block. And finally, the relation between the hand and
the block is given by cx, cy , ċx, ċy , and e.

For each variable, Table I provides the physical range of
values it can take on, the initial and final sets of landmarks,



and the numerical value or range representing the agent’s
knowledge of the value of each landmark.

TABLE II
SUBSET OF LEARNED RULES (T INDICATES EITHER CAUSAL RULE OR

FUNCTIONAL RULE)

Strata T Rule

S0= C {hx} : ux→(−∞,−302.80)⇒ ḣx→(−∞, 0)

{ux, uy} C {hx} : ux→(302.23, +∞)⇒ ḣx→(0, +∞)

C {hy} : uy→(−∞,−305.10)⇒ ḣy→(−∞, 0)

C {hy} : uy→(302.50, +∞)⇒ ḣy→(0, +∞)

S1= C ∅ : hx→[−2.03,−1.99]⇒ ḣx→[0]

{hx, ḣx, F ∅ : ḣx→(−∞, 0)⇒ ċx→(−∞, 0)

hy , ḣy} F ∅ : ḣy→[0]⇒ ċy→[0]

F ∅ : ḣy→(0, +∞)⇒ ċy→(0, +∞)
S2= F {cx} : ċx→(−∞, 0)⇒ ė→(−∞, 0)
{cx, ċx, F {cx} : ċx→(0, +∞)⇒ ė→(−∞, 0)
cy , ċy , F {cx, cy} : ċy→(−∞, 0)⇒ ė→(0, +∞)

e, ė} C {cx} : e→(0, 0.47)⇒ ḃx→(−∞, 0)
S3= empty
{bx, ḃx}

B. Learning Example

This section describes a particular case of rule and land-
mark learning that is typical of the learning agent’s behavior.

(1) By noting that the event ḣx→ (−∞, 0) of the hand
moving to the left is more likely to occur following the event
ux→(−∞, 0) of force being applied to the left, the agent
hypothesizes a causal rule linking ux→ (−∞, 0) to ḣx→
(−∞, 0). It then creates the rule

r = 〈∅ : ux→(−∞, 0)⇒ ḣx→(−∞, 0)〉

with a best reliability brel(r) = 0.36 and an entropy H(r) =
0.94.

(2) To try to make this rule more reliable, the agent looks
at the value of ux each time event ux→(−∞, 0) occurs. It
finds that the best reliability of r can be increased by creating
a landmark L1 = −302.80 (in the simulator it takes a force
of 300 to move the hand). It then updates r to be

r′ = 〈∅ : ux→(−∞, L1)⇒ ḣx→(−∞, 0)〉

with best reliability brel(r′) = 0.74 and an entropy H(r′) =
0.58.

(3) The agent cannot move the hand farther to the left if
it is already at its leftmost point. The agent finds that if it
adds a landmark L5 = [−2.12,−1.95] for hx that it can add
hx to the context of r′ creating a new rule

r′′ = 〈{hx} : ux→(−∞, L1)⇒ ḣx→(−∞, 0)〉

a best reliability of brel(r′′) = 0.90 with entropy H(r′′) =
0.39. The rule r′′ is now deterministic enough to make
useful predictions. The initial failure rate of 0.10 comes
from having experienced relatively few timesteps and the

stochastic property of motor babbling. When ux = (−∞, L1)
is selected for a small number of timesteps and it is a value
close to L1, then it may not be enough to elicit the event
ḣx→(−∞, 0). But even in this noisy environment, the rule
can be learned.

(4) Landmark L6 = [1.99, 2.04] is learned in the same
way using movement in the positive x direction. With the
addition of L6, r′′ is the first rule seen in Table II. If we
let E1 = ux(t)→ (−∞, L1) and E2 = ḣx(t)→ (−∞, 0)
then at the end of learning the rule r′′ represents the set of
probabilities

P (soon(t, E2)|E1, hx(t) = L5) = 0.01
P (soon(t, E2)|E1, hx(t) = (L5, L6)) = 0.93

P (soon(t, E2)|E1, hx(t) = L6) = 0.95

(5) Landmark L5 also allows the agent to create a new rule.
Since L5 represents the limit of movement in the negative x
direction, it can be used to predict when the hand will stop
using the rule 〈∅ : hx→L7 ⇒ ḣx→0〉, with best reliability
0.96 and entropy 0.23.

C. What the Agent Has Learned

The agent learns a set of landmarks and a stratified
structure on the set of discrete variables (Table I). It also
learns a total of 33 rules: 14 causal rules and 19 functional
rules (a sample of these appears in Table II). The numbers
of rules at levels S0, S1, S2, and S3, is 5, 15, 13, and 0,
respectively.

Recall that, initially, only the motor and direction-of-
change variables included an initial landmark at 0, and that
magnitude variables had no landmarks at all, so that any
qualitative distinctions among values of those variables had
to be learned by the agent from its own experience.

By using the learning algorithm, the agent learns that the
motor variables directly control the motion of the hand, and
that a motor value greater than about 300 is necessary to
produce motion (4 rules in S0). It learns that motion of the
hand directly affects the relational variables between the hand
and the block (5 rules in S1).

It learns that each hand position variable is restricted to
the approximate range of [−2.0,+2.0] in both the x and the
y direction. It also learns that it cannot move the hand further
in any direction if it is at the boundary in that direction (4
rules in S1).

It learns a large variety of rules (in S2 and S3) describing
the relationships among (a) the position of the hand in the
frame of reference of the block, (b) the distance between the
hand and the block, and (c) the motion of the block. It learns
a landmark on the distance e between the hand and the block
and then learns that if the distance between the hand and the
block reduces to less than 0.47 that the block may move.



The agent also learns important landmarks on the variables
cx and cy . The hand and the block each have a diameter of
2.0, so if they are next to each other c̃x will have a value of
2.0 or -2.0 depending on which side the block is on, and this
is represented by landmarks L9 and L10. When the hand is
under and touching the block c̃y = −2.0, and this value is
approximated by landmark L11.

Not every learned rule makes sense from the point of
view of a human observer. Nor is every rule learned that
a human observer would consider justified. In some cases,
deeper analysis shows that the learning agent is, in fact,
behaving sensibly. In other cases, additional learning from
additional experience will resolve problems due to statistical
anomalies. Further analysis and experimentation will bring
deeper insights into this learning process.

IV. RELATED WORK

Drescher [9] created the schema mechanism, by which an
agent progressively constructed knowledge of the world in
the form of schemas that linked contexts, actions, and results,
all consisting of Boolean variables. The schema mechanism
suffered from an intractable proliferation of rules, partly (we
believe) because it lacked the stratified model that imposes a
hierarchical structure on the set of variables in our approach.

Cohen et al. [11] created an agent called Neo that, like our
agent, learned by looking for events that tend to co-occur,
however the input into the learning algorithm was discrete.
Cohen et al. [12] have also done work with abstracting sensor
input using clustering of time series data.

Das et al. [13] also cluster time series data. Their algorithm
discretizes the data by clustering subsequences using a sliding
window. They then learn rules from this discretized data, but
the rules do not in turn influence the discretization.

To learn both a Bayesian network and the discretizations
of the variables for that network, Friedman and Goldszmidt
[14] iterate between the two. They learn new thresholds for
variables in an unsupervised setting by seeking to maximize
the mutual information between each variable and its parents.
Their work addresses the problem of building Bayesian
networks from continuous data. The purpose of a Bayesian
network is to compactly represent a full joint probability
distribution. Our method is designed, like Drescher’s, for
environments that cannot be completely characterized.

V. CONCLUSIONS AND FUTURE WORK

We have presented preliminary results from an imple-
mented computational model of an important kind of foun-
dational developmental learning. Our model demonstrates
an important synergy between the learning of landmarks
representing important qualitative distinctions, and the learn-
ing of rules that exploit those distinctions to make reliable
predictions. These qualitative distinctions make it possible
to define discrete events, and then to identify predictive rules

describing regularities among events and the values of context
variables.

We have demonstrated these only with the very first steps
in learning to control the hand of our “baby robot” and to
interact with a single object. There is much more to learn, and
the learning mechanism will undoubtedly evolve in response
to more extensive and more quantitative evaluation.

The next major step will be to incorporate active learning.
The current learning process uses sensorimotor experience
resulting from random “motor babbling” behavior. Once
the earliest levels of representation have been learned, new
landmarks to resolve non-determinism in the rules can only
be learned by actively pursuing experience in the non-
deterministic region. The rules learned in this paper encode
the knowledge necessary for the creation and execution of
simple plans needed to pursue such experience. The next step
in our research is to develop and evaluate the mechanisms
for applying that knowledge.
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