
Copyright

by

Jonathan William Mugan

2010

The Dissertation Committee for Jonathan William Mugan
certifies that this is the approved version of the following dissertation:

Autonomous Qualitative Learning of Distinctions and Actions
in a Developing Agent

Committee:

Benjamin J. Kuipers, Supervisor

Peter Stone, Supervisor

Dana Ballard

Leslie Cohen

Raymond Mooney

Autonomous Qualitative Learning of Distinctions and Actions

in a Developing Agent

by

Jonathan William Mugan, B.A.; M.B.A.; M.S.C.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2010

To my family

Acknowledgments

I would first like to thank my advisor Ben Kuipers for spending uncountable hours over the

last six years to teach me how to be a scientist and how to be precise in my speech and

writing. I would also like to thank my committee members. Dana Ballard, for teaching me

that if a problem is hard, then maybe there is a simple representation that makes it easy.

Ray Mooney, for teaching me the fundamentals of machine learning. Les Cohen, for fun

discussions and for teaching me that simple questions might not be that simple. And finally

Peter Stone, for agreeing to be my co-advisor and for teaching me how to better place my

work within the scientific community.

I would also like to thank my advisor at UT Dallas, Klaus Truemper, for teaching

me about scientific research and for encouragement and support. I would also like to thank

the past lab members Patrick Beeson, Matt MacMahon, Joseph Modayil, Aniket Murarka,

Jeff Provost, and Subramanian Ramamoorthy for proofreading, help, and guidance. And

I would also like to thank the current lab members Lewis Fishgold, Shilpa Gulati, Jeremy

Stober, and Changhai Xu for proofreading and great discussions.

Rob Weber explained to me what graduate school was all about and helped me to

get started. Thanks man. I would also very much like to thank Mom and Dad and Bryan and

Rita for their continuous support. When I was a little kid and didn’t read too good–Mom,

you never gave up on me. Thank you.

And finally, I’d like to thank my wife, Monica, who, despite her repeated threats to

“burn those books,” never actually did. You had to put up with all these years of Spartan

living and stress, and I couldn’t have done this without you. Thank you for chasing this

v

rainbow with me.

JONATHAN MUGAN

The University of Texas at Austin
August 2010

vi

Autonomous Qualitative Learning of Distinctions and Actions

in a Developing Agent

Publication No.

Jonathan William Mugan, Ph.D.

The University of Texas at Austin, 2010

Supervisor: Benjamin J. Kuipers
Co-Supervisor: Peter Stone

How can an agent bootstrap up from a pixel-level representation to autonomously

learn high-level states and actions using only domain general knowledge? This thesis at-

tacks a piece of this problem and assumes that an agent has a set of continuous variables

describing the environment and a set of continuous motor primitives, and poses a solution

for the problem of how an agent can learn a set of useful states and effective higher-level

actions through autonomous experience with the environment. There exist methods for

learning models of the environment, and there also exist methods for planning. However,

vii

for autonomous learning, these methods have been used almost exclusively in discrete en-

vironments.

This thesis proposes attacking the problem of learning high-level states and actions

in continuous environments by using a qualitative representation to bridge the gap between

continuous and discrete variable representations. In this approach, the agent begins with

a broad discretization and initially can only tell if the value of each variable is increasing,

decreasing, or remaining steady. The agent then simultaneously learns a qualitative repre-

sentation (discretization) and a set of predictive models of the environment. The agent then

converts these models into plans to form actions. The agent then uses those learned actions

to explore the environment.

The method is evaluated using a simulated robot with realistic physics. The robot

is sitting at a table that contains one or two blocks, as well as other distractor objects that

are out of reach. The agent autonomously explores the environment without being given a

task. After learning, the agent is given various tasks to determine if it learned the necessary

states and actions to complete them. The results show that the agent was able to use this

method to autonomously learn to perform the tasks.

viii

Contents

Acknowledgments v

Abstract vii

List of Tables xv

List of Figures xvi

Chapter 1 Introduction 1
1.1 Autonomous Learning from the Environment 2
1.2 Approaches to the problem . 2

1.2.1 Learning Rules . 2
1.2.2 Reinforcement Learning . 2
1.2.3 Forward and Backward Models 3
1.2.4 Evolutionary Approach . 3
1.2.5 Explicitly Build in Domain Knowledge 3

1.3 Principles of Our Approach . 4
1.3.1 Breaking up the Environment . 4
1.3.2 Developmental Learning . 5
1.3.3 Using Contingencies to Represent Knowledge 5

1.4 The Qualitative Learner of Action and Perception, QLAP 6
1.5 Contributions . 7

1.5.1 Contribution to Autonomous Mental Development 8
1.5.2 Contributions to Reinforcement Learning 8

1.6 Assumptions of QLAP . 9
1.6.1 Data Factoring Process . 9
1.6.2 Motor Conversion Process . 10
1.6.3 Related Assumptions . 10

ix

Chapter 2 Supporting Work 12
2.1 Predictive Models . 12

2.1.1 Bayesian Networks . 12
2.1.2 Dynamic Bayesian Networks . 13

2.2 Information Theory . 13
2.3 Structuring Decision Problems: MDPs . 14
2.4 Reinforcement Learning . 16

2.4.1 Representing what is good: the value function 16
2.4.2 Learning the Value Function with a Model 16
2.4.3 Learning Through Experience . 17
2.4.4 Combining Models and Experience: Dyna 18

2.5 Hierarchy . 18

Chapter 3 Qualitative Representation 19
3.1 Qualitative Representation . 19
3.2 Events . 20
3.3 Conclusion . 21

Chapter 4 Learning Concise, Reliable Predictive Models 22
4.1 Searching for Contingencies . 23

4.1.1 Contingency Definition . 23
4.1.2 The Pairwise Search . 23

4.2 Converting Contingencies to DBNs . 25
4.2.1 Adding a Context . 25
4.2.2 Notation of DBNs . 26

4.3 Adding Context Variables . 28
4.3.1 The Hillclimbing Measure . 28
4.3.2 The Hillclimbing Procedure . 29

4.4 Learning New Landmarks . 30
4.4.1 New Landmarks on Existing DBNs 30
4.4.2 New Landmarks to Predict Events 32

4.5 Magnitude DBN Models . 33

Chapter 5 From Models to Actions and Plans 35
5.1 Actions and Plans in QLAP . 36
5.2 Converting Change DBNs to Plans . 37

5.2.1 Creating the MDP from the DBN 37
5.2.2 Learning a Policy for the MDP . 41
5.2.3 Mapping the Policy to an Option 42

5.3 Converting Magnitude DBNs into Plans 42
5.3.1 Defining the Action Space . 43

x

5.3.2 Defining the Transition Function 43
5.4 Improving the State Space of Plans . 43

5.4.1 Tracking Statistics on Plans . 44
5.4.2 Adding New Variables to the State Space 44

5.5 Performing Actions . 46
5.5.1 Calling and Processing Actions 46
5.5.2 Terminating Actions . 46

5.6 Conclusion . 47

Chapter 6 Exploration and Development 48
6.1 Exploration . 48

6.1.1 Choosing a Learned Action to Practice 49
6.1.2 Choosing the Best Plan to Perform an Action 50
6.1.3 Choosing an Action within a Plan 51

6.2 Developmental Restrictions . 51
6.2.1 When an Action becomes Sufficiently Reliable 52
6.2.2 Limiting the Number of Plans . 52
6.2.3 Limiting when Change DBNs are Added 53

6.3 Targeted Learning . 53
6.4 Self . 54
6.5 Conclusion . 54

Chapter 7 Evaluation 55
7.1 Core Evaluation Environment . 56
7.2 Experimental Setup . 57

7.2.1 Task Setup . 57
7.2.2 Goals of the Core Environment 57

7.3 Tests for Statistical Significance . 58
7.4 Compare Undirected QLAP with Supervised Learning 58

7.4.1 Experimental Environment . 59
7.4.2 Experimental Conditions . 59
7.4.3 Results . 59

7.5 QLAP enables transfer learning . 65
7.5.1 Experimental Environment . 65
7.5.2 Experimental Conditions . 65
7.5.3 Results . 65

7.6 QLAP can ignore extraneous variables . 67
7.6.1 Experimental Environment . 67
7.6.2 Experimental Conditions . 69
7.6.3 Results . 69

7.7 QLAP learns landmarks that are generally useful 72

xi

7.7.1 Experimental Environment . 72
7.7.2 Experimental Conditions . 72
7.7.3 Results . 72

7.8 QLAP: Limitations and Steps towards Tool Use 74
7.8.1 Experimental Environment . 74
7.8.2 Experimental Conditions . 74
7.8.3 Results . 74

7.9 QLAP can learn to do unintuitive tasks . 76
7.9.1 Experimental Environment . 76
7.9.2 Experimental Conditions . 76
7.9.3 Results . 76

7.10 QLAP is not specific to a particular environment 78
7.10.1 Experimental Environment . 78
7.10.2 Results . 79

7.11 Ablation Studies . 81
7.11.1 Experimental Conditions . 81
7.11.2 Results . 81

Chapter 8 Discussion 89
8.1 Examples of What QLAP Learns . 89

8.1.1 Landmarks Learned . 89
8.1.2 DBNs, Plans, and Actions Learned 90

8.2 Dynamics, Hidden State, Probability, and Noise 92
8.2.1 Noise from Dynamics . 93
8.2.2 Noise from Incomplete or Incorrect Models 93
8.2.3 Noise from the Simulator . 95
8.2.4 QLAP could implement smoothing 95

8.3 Theoretical Bounds . 95
8.3.1 Learning Contingencies . 96
8.3.2 Adding Context to DBNs . 97
8.3.3 Learning Landmarks on DBNs . 97
8.3.4 Learning Landmarks on Events 97
8.3.5 MDP Planning . 97

8.4 Thresholds and Parameters . 97
8.5 Hierarchy . 98

Chapter 9 Related Work 99
9.1 Autonomous Learning . 99
9.2 Learning Models . 101

9.2.1 The Approach Taken by QLAP 101
9.3 Learning a State Abstraction . 102

xii

9.3.1 Discretizing the Space . 102
9.3.2 Finding the Right Variables . 104

9.4 Learning Actions . 104
9.5 Learning Hierarchy . 104

9.5.1 The MAXQ Value Function Decomposition 105
9.5.2 Other Work on Learning Hierarchy 105

9.6 Creating Reinforcement Learning Problems 105

Chapter 10 Future Work 107
10.1 Navigating the Space of Environmental Configurations 107

10.1.1 Social Learning . 107
10.1.2 Intrinsic Valuation of Events . 108

10.2 Reaching Developmental Milestones . 108
10.3 Creating New Representations . 109

10.3.1 Learning new variables by trying combinations 109
10.3.2 Learning more complex representations 109

10.4 Qualitative Model as Scaffolding . 110
10.5 Scaling up through Active Perception . 111
10.6 Conclusion . 112

Chapter 11 Summary and Conclusion 113

Appendix A Nominal Variables 115

Appendix B Computing Probability 116
B.1 Computing Probabilities for Best Reliability 116
B.2 Requirement of 30 Data Points . 117

Appendix C Learning the DBN Window Size 118

Appendix D Hillclimbing Algorithms 119
D.1 Adding Context Variables . 119
D.2 Learning Landmarks on DBNs . 119
D.3 Learning Landmarks to Predict Events . 121

Appendix E Motor Babbling 122

Appendix F Performing Actions 123

Appendix G Decision Parameters 125

Appendix H Tile Coding 126

xiii

Bibliography 127

Vita 136

xiv

List of Tables

3.1 Types of Qualitative Variables . 20

5.1 Objects in QLAP . 38

7.1 Variables of the Core Environment . 61
7.2 Tests for Statistical Significance (compared with no-extra) 70
7.3 Variables of the Pong Environment . 79
7.4 Tests for Statistical Significance (compared with QLAP) 83

8.1 Learned Landmarks for Core Environment 91
8.2 Action a(ḣx, [+]): move hand toward the left (rel(a) = 0.97) 92
8.3 Action a(ẋLR, [+]): move hand left w.r.t. block (rel(a) = 0.97) 92
8.4 Action a(ṪL, [+]): move block towards left edge of table (rel(a) = 0.28) . . 92
8.5 Action a(T, [+]): grab the block (rel(a) = 0.26) 93
8.6 Action a(bang, [+]): hit the block to the floor (rel(a) = 0.04) 93
8.7 Friction impedes movement when the hand is on top of the block (ux = 500). 94
8.8 The hand moves slowly when given a relatively small force (ux =−305). . 94
8.9 The hand dips in the y direction when the hand hits the limit of movement

in the x direction. 95
8.10 The hand dips in the z direction when the hand hits the limit of movement

in the y direction. 96
8.11 Variables used to determine theoretical bounds. 96

G.1 Decision Parameters and Values in QLAP 125

xv

List of Figures

1.1 The left-hand side shows a metrical map. The metrical map has high reso-
lution. The right-hand side shows a topological map. The topological map
has less resolution, but it explicitly represents the important points and the
paths between them. 4

1.2 Perception in QLAP. 7
1.3 Actions in QLAP. 8
1.4 Assumptions of QLAP. 10

2.1 (a) Bayesian Network. The value of A depends on the values of variables
B and C but not D. The conditional probability table (CPT) gives the prob-
ability distribution of A for each value of B and C. (b) Dynamic Bayesian
Network. A Bayesian network that models variable values over time. . . . 14

3.1 Landmarks divide the number line into a discrete set of qualitative values. . 20

4.1 (a) Do a pairwise search for contingencies that use one event to predict an-
other. The antecedent events are along the y-axis, and the consequent events
are along the x-axis, The color indicates the probability that the consequent
event will soon follow the antecedent event (lighter corresponds to higher
probability). When the probability of the consequent event is sufficiently
high, it is converted into a contingency (yellow). (b) When a contingency
is found, it is used to create a DBN. (c) Once a DBN is created, context
variables are added to make it more reliable. (d) The DBN creates a self-
supervised learning problem to predict when the consequent event will fol-
low the antecedent event. This allows new landmarks to be found. Those
landmarks create new events for the pairwise search. 24

4.2 An example DBN. This DBN says that if the motor value of ux becomes
greater than 300, and the location of the hand, hx, is in the range −2.5 ≤
hx < 2.5, then the variable ḣx will most likely soon become [+] (the hand
will move to the right). (The limits of movement of hx are −2.5 and +2.5,
and so the prior of 0.5 dominates outside of that range.) 26

xvi

4.3 Correspondence between QLAP DBN notation and traditional graphical
DBN notation. (a) QLAP notation of a DBN. Context C consists of a set
of qualitative variables. Event E1 is an antecedent event and event E2 is a
consequent event. (b) Traditional graphical notation. Boolean parent vari-
able event(t,E1) is true if event E1 occurs at time t. Boolean child variable
soon(t,E2) is true event E2 occurs within k timesteps of t. The other parent
variables are the context variables in C. The conditional probability table
(CPT) gives the probability of soon(t,E2) for each value of its parents. For
all elements of the CPT where event(t,E1) is false, the probability is unde-
fined. The remaining probabilities are learned through experience. 27

4.4 Moving to a landmark on a number line. 33

5.1 Planning in QLAP. (a) QLAP creates an action for each qualitative value of
each variable. This action is to bring variable Y to value y. (b) Each action
can have multiple plans. Each plan is a different way to perform the action.
The MDP plan is represented as an option oi with policy πi. (c) Plans are
created from models. The state space for an MDP is the cross product of
the values of X , Y , Z, and W from the model (although more can be added
if needed). (d) The actions for each plan are QLAP actions to move to
different locations in the state space of the MDP. This is reminiscent of
goal-regression. In this figure, we see that one of the actions for plan oi is
to call the QLAP action to bring about X→x. This link results from event
X→x being the antecedent event of the DBN model to bring about event
Y→y. 36

5.2 When an action is called, it chooses a plan. Plans, in turn, choose actions
based on the plan’s policy. This process continues until a motor action is
reached, at which point the motor value is passed back up. The action is
then processed until it terminates. While it is being processed, the plans
below it will call actions according to their policies. So there is always a
path from the called action to a motor action, but that path changes as the
action is processed. 45

7.1 The Core Environment (shown here with floating objects) 56
7.9 Number of change DBNs over time. This graph shows that the number of

DBNs does not increase without bound. We see two drops in the number
of DBNs. The first drop corresponds to learning to move the hand and
those actions becoming sufficiently reliable. The second drop corresponds
to contingencies being deleted after 100,000 timesteps because they did not
become plans to perform actions. 71

7.12 QLAP learns to make the contingent ball move up. 77
7.13 The pong environment. 78

xvii

7.14 QLAP learns to play Pong. 80
7.21 Move the hand. Cumulative number of exploratory calls to actions to each

of the variables ḣx, ḣy, and ḣz to positive and negative. 86
7.22 Move the block. Cumulative number of exploratory calls to actions to each

of the variables ṪL, ṪR, and ṪT to positive and negative. 87
7.23 Pick up the block. Cumulative number of exploratory calls to the action

a(T, true). 87
7.24 Number of change DBNs over time. (Error bars are standard error.) 88
7.25 Number of change DBNs over time. In this graph, the error bars have been

removed to more clearly show the trends. 88

10.1 Metaphor for how QLAP can break up an environment. Chapter 1 discusses
how QLAP is analogous to learning a topological map that breaks up the
environment instead of a metrical map. But once QLAP breaks up the envi-
ronment, continuous methods can be used within the pieces to get the best
of both the qualitative approach used in QLAP and continuous approaches
such as regression. (a) Metaphor for how the environment is represented
by QLAP. (b) Metaphor for how the pieces of the environment are linked
together. Continuous learning can then be done within each piece. 111

xviii

Chapter 1

Introduction

We would like to build intelligent agents that can autonomously learn to predict and con-
trol the environment using only domain-general knowledge. Such agents could simply be
placed in an environment, and they would learn it. After they had learned the environment,
the agents could be directed to achieve the goals specified by the engineers. The intelligence
of the agents would free engineers from having to design new agents for each environment.
These agents would be flexible and robust because they would be able to adapt to aspects
of the environment not anticipated by engineers.

Designing such agents is a difficult problem because the environment can be almost
infinitely complex. This complexity means that an agent with limited resources cannot
represent and reason about the environment without describing it in a simpler form. And
possibly more importantly, the complexity of the environment means that it is a challenge
to generalize from experience since each experience will be in some respect different.

A solution to the difficulty of learning in a complex environment is for the agent to
autonomously learn useful and appropriate abstractions. Pierce and Kuipers [1997] created
a method that searched through abstractions to find those best suited for representing the
environment. Modayil and Kuipers [2007] built on this work to enable a robot to identify
moving objects. The work presented in this thesis is a continuation of this work.

Given the groundwork laid by [Pierce and Kuipers, 1997] and [Modayil and Kuipers,
2007], an agent can represent the world with a set of continuous variables and affect the
world using a set of continuous effectors. The specific problem addressed by this thesis
is: given an environment consisting of a set of time-varying continuous variables, how can
an agent learn models to predict the environment and learn high-level actions to control
it. The thesis of this dissertation is that a learning algorithm can be constructed that builds
many small models, and then bootstraps to more complex and more reliable models, and
then turns those models into plans for actions.

1

1.1 Autonomous Learning from the Environment

This thesis addresses the problem of how an agent can autonomously learn from the envi-
ronment. By learning, we mean that an agent should learn a predictive model and a set of
actions using autonomous exploration.

Predictive models allow the agent to simulate the environment, which allows it to
construct plans. These plans can be converted to actions that allow the agent to alter the en-
vironment. We desire that the agent learn through autonomous exploration for two reasons.
The first is that we want to free the engineer from having to specify how the environment
should be explored. Second, autonomous exploration provides added flexibility because the
environment could change in a way that the engineer did not anticipate.

We focus on environments that are continuous, dynamic, and have state. Contin-
uous environments require the agent to form an abstracted representation. Dynamic envi-
ronments change and so cannot be memorized. They require an agent to build a model.
Environments that have state require the agents to make decisions over time and to make
different decisions in different situations.

1.2 Approaches to the problem

We are interested in autonomous learning in continuous, dynamic environments. There
have been many approaches to this problem. The method presented in this thesis uses some
of these methods and is related to others.

1.2.1 Learning Rules

One way to learn from the environment is to learn STRIPS-like [Nilsson, 1980] rules of the
form “in context x, if the agent does y, then z will occur” [Drescher, 1991; Shen, 1994]. In
the classic AI tradition, these rules can be chained together to form plans to achieve results.
Our method learns models that are similar to these rules, and the structure of these rules
helps our agent to plan.

1.2.2 Reinforcement Learning

The classic AI planning model assumes deterministic actions [Boutilier et al., 1999]. As
research has moved towards less deterministic environments, Markov Decision Process
(MDP) planning [Puterman, 1994] has become popular. In MDP planning, an agent learns a
policy that specifies the best action for each state. One way to learn this policy is reinforce-
ment learning [Sutton and Barto, 1998]. Our method uses MDP planning in addition to
classic AI planning. Our method learns the state space for the MDP and uses reinforcement
learning to learn an action policy.

2

1.2.3 Forward and Backward Models

Forward models predict how the environment will change based on the motor values, and
backward models determine what motor values are needed to give a particular environment
change. These models are generally fine-grained, predicting the real values of variables.
Work has been done in the area of learning forward and backward models of the dynamics of
the environment either using regression [Atkeson et al., 1997a,b], or by neural nets [Jordan
and Rumelhart, 1992].

These methods require that a plan be specified in order for an agent to perform
actions (e.g. a plan for how to go around objects). Additionally, these methods do not gen-
erally model interactions between objects. However, these methods have been successful
at allowing robots to learn complex tasks [Vijayakumar et al., 2005]. This is an important
approach that could be complementary to the discretization-based approach of this thesis.
Chapter 10 describes how our method might be extended to take advantage of this kind of
fine-grained control.

1.2.4 Evolutionary Approach

Artificial life/evolutionary algorithms/genetic algorithms perform a search over a space to
find a policy that maximizes a fitness function [Bedau, 2003]. There have been some im-
pressive results on a small scale [Nolfi and Floreano, 2002], but making the search more
tractable is an open problem. For example, [Whiteson et al., 2005] found that task decom-
position is essential for evolutionary methods to work on the task of soccer keepaway. Our
approach has an evolutionary flavor because it does a search of a large number of predictive
models and uses their predictive accuracy as a fitness function.

1.2.5 Explicitly Build in Domain Knowledge

Our approach is to begin with no domain knowledge (a “bottom-up” approach) and to build
up competency. It is worth noting that there are other approaches that seek to build flex-
ible robots by engineering in domain knowledge and using learning to generalize when
necessary (a “top-down” approach). The subsumption architecture [Brooks, 1986] has as
its philosophy that research in robotics should start with small, insect-like behaviors, and
that more complex behaviors should be built (by hand if necessary) on top of simpler ones.
Behavior-based robotics [Arkin, 1998] is a related approach. It posits that robots should
have a set of behaviors, and that each behavior should be learned or coded separately. Using
the behavior-based approach, Stoytchev [2005a, 2005b] focuses on tool use and advocates a
behavior grounded approach to learning in which an agent is endowed with a set of behav-
iors, and through experimentation the agent learns which behaviors, tools, and objects go
together to achieve a desired result. Using this approach, in [Sinapov and Stoytchev, 2007]
the agent was able to learn how a puck would move for different combinations of tools and
actions.

3

Other notable work includes [Fitzpatrick et al., 2003]. Given a set of initial hand
positions, they learn the direction an object moved when the robot reached for it. And there
has been work on learning how to grasp novel objects [Saxena et al., 2007]. Related to this
approach of learning particular behaviors is demonstration learning. In this approach, the
robot learns from a human teacher [Price and Boutilier, 2003; Knox and Stone, 2010].

Both bottom-up and top-down approaches appear to be needed. A top-down ap-
proach might be the fastest way to obtain narrowly-useful robots, but bottom-up approaches
may eventually enable a robot to have the human-like flexibility and intelligence needed to
display common sense.

1.3 Principles of Our Approach

Our approach is based on three broad principles. (1) The learning agent should break up
the environment. (2) The learning agent should proceed developmentally in a bootstrapping
fashion. (3) The agent should base its models on learned contingencies.

Metrical map Qualitative map

Figure 1.1: The left-hand side shows a metrical map. The metrical map has high resolution.
The right-hand side shows a topological map. The topological map has less resolution, but
it explicitly represents the important points and the paths between them.

1.3.1 Breaking up the Environment

Our method breaks up the environment in two ways. It discretizes the input, and it fragments
the environment by representing the environment and plans for actions using many small
models. This philosophy is analogous to learning a topological map instead of a metrical
map [Kuipers, 2000] as shown in Figure 1.1. Fragmenting the environment into many

4

small models makes learning easier because to learn each part, the agent need only focus
on a small amount of the input.

Discretizing the input makes learning easier because the agent can generalize. In a
continuous environment, each learning instance is unique. But by mapping similar instances
together, the agent can use simple statistical learning. Discretizing the input also allows the
agent to autonomously define goals. The discretization in our method is represented using
a qualitative representation. A qualitative representation encodes the values of continuous
variables relative to known landmark values [Kuipers, 1994].

1.3.2 Developmental Learning

Children learn developmentally. In Piaget’s [1952] theory of cognitive development, chil-
dren’s cognitive development progresses in stages. More recently, Cohen [2002] proposed
an information processing theory of cognitive development in which children are endowed
with a domain-general information processing system that they use to bootstrap knowledge.
Gibson (1988) proposed that human children are endowed with systems to allow them to
explore and learn about the world. She emphasized that it was this exploration that enabled
cognitive development.

In our method, the agent bootstraps new skills on top of existing skills. The driv-
ing force behind the developmental learning is the desire to predict the environment. What
the agent strives to predict is based on the models and the discretizations it has previously
learned, and new discretizations are learned to make those models more reliable. Addition-
ally, the skills that the agent has already learned determine how it can explore the environ-
ment.

1.3.3 Using Contingencies to Represent Knowledge

Our method uses contingencies to represent knowledge. The contingencies are of the form:
if event a occurs, then event b will soon occur. It has been proposed that humans have an in-
nate contingency detection module [Gergely and Watson, 1999], and it has been shown that
human infants can detect contingencies in their environment shortly after birth [DeCasper
and Carstens, 1981]. Contingencies have the advantage of being easy to learn because the
agent need only compare each pair of events to see if they form a contingency. Additionally,
contingencies form a natural representation for planning, since they can represent sequences
of events.

However, as Watson [2001] has pointed out, a prerequisite for learning contingen-
cies is determining when an event has occurred. Fortunately, our method learns a discretiza-
tion, and so the learning of contingencies can be tied to the definition of events through
discretization.

5

1.4 The Qualitative Learner of Action and Perception, QLAP

In this thesis, we present the Qualitative Learner of Actions and Perception, QLAP. QLAP
is an algorithm that allows an agent to use low-level sensors and effectors to learn high-level
representations and actions in continuous, dynamic environments. QLAP consists of four
steps:

1. Begin with a very broad discretization of the environment.

2. Simultaneously learn a discretization and a set of predictive models of the environ-
ment.

3. Convert the models into plans and form the plans into a set of hierarchical actions.

4. Use learned actions to explore the environment

Begin with a broad discretization. The discretization comes from the set of learned land-
marks. Initially, the agent can tell if the value of each variable is increasing, decreasing, or
remaining steady. Similarly, the agent can tell if a motor value is positive, negative, or zero.

Simultaneously learn a discretization and a set of predictive models of the environment.
(Shown in Figure 1.2.) QLAP represents models using dynamic Bayesian networks (DBNs)
[Dean and Kanazawa, 1989] because they are simple and probabilistic. Given the current
discretization, QLAP defines predicates for each possible antecedent event and consequent
event. To determine which models to learn, QLAP tracks statistics on all possible pairs of
events. QLAP creates a DBN for each pair of events that form a contingency where the
consequent event soon follows the antecedent event with sufficient reliability.

As QLAP gathers experience in the world, it tracks statistics on the learned DBNs
and iteratively adds context variables to make the contingency more reliable. To find con-
text variables that predict when the consequent event will soon follow the antecedent event,
QLAP may have to introduce new landmarks. To find these landmarks, QLAP stores the real
values of each variable each time the antecedent event of some model is observed. It then
looks to see if the consequent event is soon observed. QLAP can then use an information-
theoretic method to determine if there is a landmark on some continuous variable that, if
defined, would allow the model to more reliably predict when the consequent event will fol-
low the antecedent event. An important aspect of QLAP is that it considers new distinctions
to be broadly useful. Each new landmark that is learned modifies the current discretization
and enables new models to be learned.

Convert the models into plans and form the plans into a set of hierarchical actions. (Shown
in Figure 1.3.) Each model predicts when a consequent event will occur. QLAP converts a
model that reliably predicts when the consequent event will occur into a plan to bring about
that event. Plans in QLAP are represented in the options framework [Sutton et al., 1999].

6

An option is like a subroutine, and QLAP uses the variables in the model to determine the
state space of the option, and uses the consequent event as the goal state of the option.

A given plan possibly does not reference any motor variables. To overcome this
difficulty, QLAP uses a hierarchical representation. For each discrete (qualitative) value of
each variable, QLAP creates an action to bring that variable to that value. This means that
in a plan, to bring about the antecedent event, or to change the value of any context variable,
QLAP simply has to call the action to bring about that desired value.

Each plan that QLAP learns is associated with the action that matches the conse-
quent event of the contingency that led to the plan. A given consequent event may have
more than one antecedent event that predicts it. This is good because different plans might
be best in different situations. This means that each QLAP action can have multiple pos-
sible plans. Each QLAP action keeps statistics on how reliable each of its plans is in each
situation. This allows it to pick the best plan for the current state.

Explore the environment using learned actions. QLAP explores the environment by choos-
ing learned actions to “practice.” So that it can explore the space effectively, QLAP uses
Intelligent Adaptive Curiosity [Oudeyer et al., 2007] to choose actions that are neither too
hard nor too easy.

…
…

time

Images

Continuous

variables

Models of the

environment

Discrete

variables

Feedback from model to discretization

(a)

(b)

(c)
(d)

(e)

Figure 1.2: Perception in QLAP.

1.5 Contributions

QLAP is the only algorithm that we are aware of that learns states and hierarchical actions
in continuous, dynamic environments with continuous motors through autonomous explo-
ration. In addition, QLAP contributes to two subfields. QLAP contributes to the field of
autonomous mental development and the field of reinforcement learning.

7

(a) Models are converted into plans. (b) Plans are different ways to do actions.

(c) Actions and plans are put together into a hierarchy.

Low-level

motor
commands

…

Action

Action

Action

Action

Action

Action

Action

…

Action

Action

Action

…

…

…(,)Q s a

()
arg max (,)

a

s
Q s a

(,)Q s a

()
arg max (,)

a

s
Q s a

(,)Q s a

()
arg max (,)

a

s
Q s a

(,)Q s a

()
arg max (,)

a

s
Q s a

(,)Q s a

()
arg max (,)

a

s
Q s a

(,)Q s a

()
arg max (,)

a

s
Q s a

(,)Q s a

()
arg max (,)

a

s
Q s a

(,)Q s a

()
arg max (,)

a

s
Q s a

(,)Q s a

()
arg max (,)

a

s
Q s a

(,)Q s a

()
arg max (,)

a

s
Q s a

(,)Q s a

()
arg max (,)

a

s
Q s a

Action

…

(,)nQ s a

()
arg max (,)

n

n
a

s
Q s a

1(,)Q s a

1

1

()
arg max (,)

a

s
Q s a

Figure 1.3: Actions in QLAP.

1.5.1 Contribution to Autonomous Mental Development

QLAP provides a method for an agent to learn through a developmental progression. Specif-
ically, QLAP provides a method for a developing agent:

1. to learn its first temporally-extended actions.

2. to learn more complex actions on top of previously-learned actions.

1.5.2 Contributions to Reinforcement Learning

Reinforcement learning is about enabling an agent to learn from experience to maximize a
reward signal. QLAP addresses three challenges in reinforcement learning: (1) continuous
states and actions, (2) automatic hierarchy construction, and (3) automatic generation of
reinforcement learning problems.

1. Continuous states and actions are a challenge because it is hard to know how to gener-
alize from experience since no two states are exactly alike. QLAP provides a method
for discretizing the state and action space so that the discretization corresponds to the
“natural joints” in the environment.

2. Learning of hierarchies can enable an agent to explore the space more effectively
because it can aggregate smaller actions into larger ones. QLAP creates a hierarchical
set of actions from continuous motor variables.

8

3. Currently, most reinforcement learning problems have to be designed by the experi-
menter. QLAP autonomously creates reinforcement learning problems as part of its
developmental progression.

1.6 Assumptions of QLAP

As discussed at the beginning of this chapter, QLAP builds on the work by [Pierce and
Kuipers, 1997] and [Modayil and Kuipers, 2007]. This means that the QLAP agent interacts
with the world by using a set of continuous variables and acts in the world using a set of
continuous effectors. This assumption is represented in Figure 1.4.

1. The environment produces a large, undifferentiated stream of information.

2. The data factoring process ((a) in Figure 1.4) takes this stream of information and
converts it into a time-varying set of continuous variables ((c) in Figure 1.4).

3. QLAP receives these variable values and sets the values for the primitive motor vari-
ables.

4. The primitive motor variables are converted into raw motor variables by the motor
conversion process ((b) in Figure 1.4).

1.6.1 Data Factoring Process

The data factoring process converts the sensory stream of the environment into a set of con-
tinuous variables. The data factoring may come directly from the sensors in the environment
(for example, a network of temperature readings) or it may be done by humans.

A data factoring process is almost always assumed, e.g. [Pasula et al., 2007; Stoytchev,
2005a; Degris et al., 2006; Vigorito and Barto, 2008; Strehl et al., 2007]. For the experi-
ments in this dissertation, we rely upon the results of [Modayil and Kuipers, 2007]. In
their work, they identified and tracked moving objects. From this, it is relatively straight-
forward to get variables for object locations and distances between objects that are used for
experiments.

QLAP makes some assumptions about how the environment is factored. QLAP
assumes that any goal that an outside observer would want the agent to accomplish is repre-
sented with an input variable. QLAP also assumes that meaningful landmarks can be found
on single variables. One could envision a situation where there is only a sensible landmark
on some combination of variable values, for example their product.

9

QLAP

Environment

Continuous

input

variables

(a) (b)

(c) (d)
Primitive
motor
variables

Data

factoring

process

Motor

conversion

process

Figure 1.4: Assumptions of QLAP.

1.6.2 Motor Conversion Process

QLAP assumes a set of continuous primitive motor variables that correspond to orthogo-
nal directions of movement. The motor conversion process converts these primitive motor
variables assumed by QLAP into the raw motor variables of the robot. QLAP builds on the
work of Pierce and Kuipers [1997]. In their work, an agent was able to use principal com-
ponents analysis (PCA) [Duda et al., 2000] to learn a set of primitive actions corresponding
to turn and travel for a robot that had motors to turn each of two wheels independently.

1.6.3 Related Assumptions

QLAP makes assumptions about the dynamics of the environment. QLAP uses statistical
learning, this has the effect that if the dynamics are such that important contingencies occur
too rarely, then QLAP will not be able to learn them. QLAP searches for context variables
that predict when a learned contingency will be reliable. These context variables are added
one-by-one by hill climbing on the reliability of the contingency. Thus, QLAP assumes
that each variable will help individually. Relatedly, contingencies cannot require too many
context variables to be reliable. This means that QLAP assumes that the environment is
decomposable into relatively small fragments. And QLAP is not designed for learning
fine-grained movement within fragments. Chapter 10 will present ideas for future work to

10

extend QLAP to learn such fine-grained models.

11

Chapter 2

Supporting Work

QLAP builds on a large body of supporting work. QLAP represents the dynamics of the
environment using learned graphical models. QLAP uses information theory for measur-
ing how deterministic these models are and for evaluating possible model improvements.
QLAP uses Markov decision processes (MDPs) and reinforcement learning for making de-
cisions over time and learning plans. And QLAP uses the options framework for temporal
abstraction. This chapter provides a brief introduction to each of these topics and describes
how each is used in QLAP.

2.1 Predictive Models

As discussed in Section 6 of Chapter 1, QLAP interacts with the world using a set of contin-
uous variables. QLAP discretizes these variables using learned landmarks. This discretiza-
tion results in a factored state representation where the state space consists of the Cartesian
product of the qualitative values of all of the variables. In a factored representation, the size
of the state space grows exponentially with the number of variables. This is called the curse
of dimensionality [Duda et al., 2000].

The curse of dimensionality makes it difficult to represent the state space and how
it changes over time. One solution is to try to predict each variable independently and
to use only the variables that determine the value of that variable in the prediction. This
is the approach we will take using graphical models. This section introduces two types
of graphical models: Bayesian networks and dynamic Bayesian networks. QLAP uses
dynamic Bayesian networks, but we first introduce Bayesian networks because it simplifies
the explanation of dynamic Bayesian networks.

2.1.1 Bayesian Networks

We could, in principle, represent the environment using a multidimensional probability
distribution. This distribution would give more weight to likely states and less weight to

12

unlikely states. But because of the curse of dimensionality, this is difficult to do. However,
if each variable is not dependent on all of the others, then Bayesian networks allow for the
compact representation of a probability distribution [Duda et al., 2000]. This compactness
comes from conditional independence. If the probability of a value of variable A condi-
tioned on some other variables B and C is independent of the value of a variable D, then
P(A|B,C) = P(A|B,C,D).1 This conditional independence allows variable D to be ignored.

An example of a Bayesian network is shown in Figure 2.1 (a). In this figure, the
variables B and C are the parents of child variable A. And in the discrete case, there is a
conditional probability table (CPT) that gives the distribution over the values of C for each
value of its parent variables.

Bayesian networks give a static description of state. We desire models that represent
state changes over time. This can be accomplished with dynamic Bayesian networks.

2.1.2 Dynamic Bayesian Networks

Dynamic Bayesian networks (DBNs) have been created to compactly represent how states
change over time [Dean and Kanazawa, 1989]. An example is shown in Figure 2.1 (b). We
see that the value of variable A at time t + 1 is partially determined by its value at time t.
QLAP learns DBNs to model the dynamics of the environment.

2.2 Information Theory

QLAP uses information theory to measure how deterministic a model is and to evaluate
possible model improvements. Information is anything that reduces uncertainty among a
set of alternatives [Shannon, 1948; Ayres, 1994]. We can measure the current uncertainty
over a set of alternatives using entropy [Duda et al., 2000]. The entropy H(Y) of a random
variable is given by

H(Y) =
∑

j

P(Y = y j) log2
1

P(Y = y j)

The conditional entropy H(Y |X) of a random variable Y given X is

H(Y |X) =
∑

i

H(Y |X = xi)P(X = xi)

1We note that if A is conditionally independent of C given B (denoted by A⊥C | B) then P(A,C|B) =
P(A|B)P(C|B). And we can show that this conditional independence implies P(A|B) = P(A|B,C) by

P(A|B) =
P(A,C|B)
P(C|B)

=
P(A,C|B)P(B)
P(C|B)P(B)

=
P(A,C,B)
P(C,B)

= P(A|B,C) (2.1)

Showing A⊥D | B,C ⇒ P(A|B,C) = P(A|B,C,D) is analogous.

13

(| , ,) (| ,)P A B C D P A B C

A

C

B

2 3(| ,)P A b c

(a) Bayesian Network

CPT

(b) Dynamic Bayesian
Network 1tA tA

tB

tC

B C D

Figure 2.1: (a) Bayesian Network. The value of A depends on the values of variables B
and C but not D. The conditional probability table (CPT) gives the probability distribution
of A for each value of B and C. (b) Dynamic Bayesian Network. A Bayesian network that
models variable values over time.

and is the weighted average of the entropy of Y given X = xi, weighted by the probability
P(X = xi). QLAP uses the conditional entropy of the child variable given its parents as a
measure of how deterministic a DBN is.

Information gain measures the expected reduction in entropy (uncertainty) from
some piece of information [Mitchell, 1997]. The information gain of Y given X is

I(Y ;X) = H(Y)−H(Y |X) (2.2)

QLAP uses information gain as a measure of the value of adding a new discretization or
context variable.

2.3 Structuring Decision Problems: MDPs

An agent can make models of the world using dynamic Bayesian networks, but how can
the agent make decisions over time? One approach is an MDP. A Markov Decision Process
(MDP) is a framework for understanding decision making over time [Puterman, 1994].

14

An MDP is a four-tuple2 of the form M = 〈S,A,T,R〉 where S is a set of states, A is a
set of actions, T (s,a,s′) = P(s′|s,a) is the transition function over states and actions, and
R(s,a,s′) is a reward function.

MDPs are often used as the structure for decision making for learning agents [Jons-
son and Barto, 2007; Sutton et al., 1999; Brafman and Tennenholtz, 2003]. An MDP breaks
the world up into states; it represents what is in the world, and it represents everything that
can be perceived about the world. Additionally, an MDP represents how the world can
change, including how the agent’s actions affect the world. And it also includes what is
“good” for the agent in the reward function.

The philosophy of MDP use in QLAP is different, and is closer to the idea of an
image schema in developmental psychology. Within developmental psychology, Jean Man-
dler [2004a] proposed a theory of perceptual meaning analysis, which is an experimentally
grounded theory that explains how infants can learn concepts and how these concepts can
be represented. She describes perceptual meaning analysis as “the central attentive pro-
cess that redescribes attended perceptual information into a simpler and conceptual (ac-
cessible) form” [Mandler, 2004b]. In Mandler’s theory, concepts are represented with im-
age schemas, and in [Mandler, 2004a] she says that “the image-schemas that perceptual
meaning analysis creates are analog representations that summarize spatial relations and
movements in space” (p. 79). The notion of image schemas and the idea of using them
as a foundation for understanding was advanced by [Lakoff and Johnson, 1980]. Johnson
[1987] writes that an image schema consists of set of components that are related by definite
structure.

To our knowledge, there have been no convincing computational implementations
of image schemas. MDPs are not analog representations and are missing the “image” part
of the image schemas. But MDPs do encapsulate knowledge about the world in a prin-
cipled framework, and QLAP takes advantage of MDPs to represent how the agent can
interact with the world. As a consequence of using MDPs in this way, QLAP assumes that
the world is too large to be represented with a single MDP and therefore QLAP does not
assume a single, underlying MDP. Instead, QLAP creates many small MDPs, where each
MDP represents some small aspect of the environment. These MDPs are not assumed to
objectively exist in the world, but are created by the agent, even up to the discretization.

Once these MDPs are created by QLAP, QLAP can take advantage of the large body
of research on MDPs. Within each MDP, QLAP learns a policy π . A policy is a way to
represent a plan within an MDP, and specifies which action the agent should choose for
each state s ∈ S . This policy can be learned using reinforcement learning as discussed in
the next section.

2Some authors also include the discount rate γ as well as a distribution τ over initial states.

15

2.4 Reinforcement Learning

Reinforcement learning is a way to learn a policy for an MDP [Sutton and Barto, 1998]. Its
roots trace back to reinforcement learning in psychology where an agent is not told what
to do, but rewarded for doing the right thing [Hill, 1990]. This method works well with
animals, and the idea is that intelligent agents might be able to learn in the same way.

Within the framework of an MDP, reinforcement learning (RL) is a method to learn
a policy π that maximizes the total reward r earned over time. A policy π(s) gives a pre-
scribed action (or distribution of actions) for each state s.

2.4.1 Representing what is good: the value function

Integral to the MDP representation is the Markov assumption. The Markov assumption is
that the current state has all the information necessary to make decisions. An important
consequence of the Markov assumption is that the agent can use a value function. A value
function gives a measure of how “good” it is to be in a particular state. More formally, a
state-value function

V π(s) = Eπ

[
∞∑

k=0

γ
krk+t+1|st = s,π

]
(2.3)

gives the cumulative expected reward, discounted by γ , of being in state s and following
policy π thereafter. A value function can also be in the form Q(s,a), called a state-action-
value function,

Qπ(s,a) = Eπ

[
∞∑

k=0

γ
krk+t+1|st = s,at = a,π

]
(2.4)

which gives the cumulative expected discounted reward of being in state s and taking action
a and following policy π thereafter.

The agent can easily convert the value function to a policy. In the current state s,
the agent can simply choose the action a with the highest Q(s,a) value. To make sure that
it explores, the agent can choose the best action with probability 1−ε , and a random action
with probability ε . This action selection method is called ε-greedy.

2.4.2 Learning the Value Function with a Model

If the agent has a model, it can learn by simulating experience. The agent can imagine
all possible trajectories to learn a policy of what to do in each state. More formally, if
the transition function T and the reward function R are known, then the policy π can be
computed using dynamic programming with the Bellman equation. The Bellman equation

16

for Q∗ for the optimal policy π∗ is

Q∗(s,a) =
∑

s′
P(s′|s,a)

[
R(s,a,s′)+ γ max

a′
Q∗(s′,a′)

]
(2.5)

where R(s,a,s′) is the reward that results from taking action a in state s and reaching state
s′. The agent can simultaneously learn the optimal policy π∗ and the associated optimal
state-action value function Q∗ using value iteration by turning the Bellman equation into an
update rule.

2.4.3 Learning Through Experience

If the agent does not have a model, or the model is incomplete, it can learn through experi-
ence. If the transition function T and the reward function R are not known, then there are
two approaches to learning the value function (and thus the policy).

1. Learn a model T and a reward function R through experience, and then use dynamic
programming.

2. Use a model-free approach to learn Q(s,a) through experience.

One model-free approach to learning Q(s,a) is temporal difference learning. Temporal-
difference learning updates the estimate for Q(s,a) after each timestep by updating the
current estimated value of Q(s,a) to account for the observed reward and the new state s′.

One model-free method of temporal difference learning is Sarsa, an acronym that
comes from 〈s,a,r′,s′,a′〉 because the agent takes an action a in a state s and it then arrives
in state s′ and receives reward r′ and chooses next action a′. Using Sarsa, the update rule is

Q(s,a)← Q(s,a)+α[r′+ γQ(s′,a′)−Q(s,a)] (2.6)

To speed up learning, the agent can remember the states and actions it has taken so
that when it gets a reward it can immediately propagate that reward back to past states and
actions. This is done using an eligibility trace e(s,a) that gives a measure of how recently
action a was taken in state s. After every timestep the eligibility trace is updated so that

∀s,a : e(s,a)← λγe(s,a) (2.7)

where λ is a decay parameter 0≤ λ ≤ 1. The eligibility trace is then updated for the most
recently taken action a in the state s so that

e(s,a)← 1 (2.8)

17

Using eligibility traces, Equation 2.6 is modified so that each value of Q is updated after
each timestep according to the rule

∀s,a : Q(s,a)← Q(s,a)+ e(s,a)α[r′+ γQ(s′,a′)−Q(s,a)] (2.9)

2.4.4 Combining Models and Experience: Dyna

Dyna [Sutton and Barto, 1998] provides a framework for using experience to update both
the model and the value function policy directly. In Dyna-Q, as the agent explores the world
it updates both the model and the Q table, and after each timestep it uses the updated model
to update the Q table.

2.5 Hierarchy

Hierarchy provides the advantage of temporal abstraction because decisions are not required
at each timestep, but rather only when temporally extended actions terminate [Barto and
Mahadevan, 2003]. QLAP learns a hierarchy of actions. These actions are hierarchical
because these actions execute plans that call other actions. And once an action is called, the
calling action does not concern itself with how the called action is carried out.

A common framework for hierarchy within reinforcement learning is options. An
option [Sutton et al., 1999] is like a subroutine that can be called to perform a task. An op-
tion oi is typically expressed as the triple oi = 〈Ii,πi,βi〉 where Ii is a set of initiation states,
πi is the policy, and βi is a set of termination states or a termination function. Chapter 5 will
discuss how QLAP uses options.

18

Chapter 3

Qualitative Representation

A qualitative representation allows an agent to bridge the gap between continuous and dis-
crete values. It does this by encoding the values of continuous variables relative to known
landmarks [Kuipers, 1994]. A qualitative representation breaks the number line up into an
ordered set of qualitative values. All of the continuous values between any two landmarks
have the same qualitative value. By going “up” or “down” along the number line, a qualita-
tive variable can change from one qualitative value to the next. A qualitative representation
allows the agent to generalize and to focus on important events, where an important event
occurs when the qualitative value of a variable changes.

A qualitative representation is different from a simple discretization because the
landmarks themselves are important. A variable value can be at a landmark, it can be
moving towards the landmark, or it can be moving away from it. This chapter discusses the
qualitative representation and how it allows the agent to define events. It then poses some
questions that will be answered in later chapters.

3.1 Qualitative Representation

QLAP converts continuous variables to qualitative variables using landmarks. A land-
mark is a symbolic name for a point on a number line. Using landmarks we can con-
vert a continuous variable ṽ with an infinite number of values into a qualitative variable
v with a finite set of qualitative values Q(v) called a quantity space [Kuipers, 1994]. A
quantity space Q(v) = L(v)∪ I(v), where L(v) = {v∗1, · · · ,v∗n} is a totally ordered set of
landmark values, and I(v) = {(−∞,v∗1),(v

∗
1,v
∗
2), · · · ,(v∗n,+∞)} is the set of mutually dis-

joint open intervals that L(v) defines in the real number line. A quantity space with two
landmarks might be described by (v∗1,v

∗
2), which implies five distinct qualitative values,

Q(v) = {(−∞,v∗1),v
∗
1,(v

∗
1,v
∗
2),v

∗
2,(v

∗
2,+∞)}. This is shown in Figure 3.1.

QLAP receives a set of continuous input variables from the world and uses a set

19

1

 1 1 1 2 2 2() , , , , , , ,v v v v v v v

1v

2v

Figure 3.1: Landmarks divide the number line into a discrete set of qualitative values.

of continuous motor variables as output.1 Two qualitative variables are created for each
continuous input variable ṽ, a discrete variable v(t) that represents the qualitative magnitude
of ṽ(t), and a discrete variable v̇(t) that represents the qualitative direction of change of ṽ(t).
Also, a qualitative variable u(t) is created for each continuous motor variable ũ.2 The result
of these transformations is three types of qualitative variables that the agent can use to affect
and reason about the world: motor variables, magnitude variables, and direction of change
variables. The properties of these variables are shown in Table 3.1.

Table 3.1: Types of Qualitative Variables

Type of Variable Initial Landmarks Learn Landmarks?
motor {0} yes
magnitude {} yes
direction of change {0} no

Each direction of change variable v̇ has a single intrinsic landmark at 0, so its quan-
tity space isQ(v̇)= {(−∞,0),0,(0,+∞)}, which can be abbreviated asQ(v̇)= {[−], [0], [+]}.
Motor variables are also given an initial landmark at 0. Magnitude variables initially have
no landmarks because zero is just another point on the number line. Initially, when the
agent knows of no meaningful qualitative distinctions among values for ṽ(t), we describe
the quantity space with the empty list of landmarks, {}, as Q(v̇) = {(−∞,+∞)}. However,
the agent can learn new landmarks for magnitude and motor variables. Each additional
landmark allows the agent to perceive or affect the world at a finer level of granularity.

3.2 Events

If a is a qualitative value of a qualitative variable A, meaning a ∈ Q(A), then the event
At→a is defined by A(t−1) 6= a and A(t) = a. That is, an event takes place when a discrete

1QLAP can also handle discrete (nominal) input variables. See Appendix A for details.
2Note that when the distinction between motor variables and non-motor variables is unimportant, we will

refer to the variable as v.

20

variable A changes to value a at time t, from some other value. We will often drop the t
and describe this simply as A→a. We will also refer to an event as E when the variable and
qualitative value involved are not important, and we use the notation E(t) to indicate that
event E occurs at time t.

For magnitude variables, At→a is really two possible events, depending on the
direction that the value is coming from. If at time t − 1, A(t) < a, then we describe this
event as ↑At→a. Likewise, if at time t−1, A(t) > a, then we describe this event as ↓At→a.
However, for ease of notation, we generally refer to the event as At→a. We also say that
event At→a is satisfied if At = a.

3.3 Conclusion

To use a qualitative representation, the agent must have a set of landmarks that correspond
to the dynamics of the environment. How can these landmarks be learned? Additionally,
a landmark value can be reached if the agent can set the direction of change of the vari-
able. How can the agent predict these changes and control them? These questions will be
answered in the next two chapters.

21

Chapter 4

Learning Concise, Reliable
Predictive Models

There are many methods for learning predictive models in continuous environments. Such
models have been learned, for example, using regression [Atkeson et al., 1997a,b; Vijayaku-
mar and Schaal, 2000; Vijayakumar et al., 2005] neural networks [Jordan and Rumelhart,
1992], or Gaussian processes [Rasmussen, 2006]. But as described in Chapter 1, we want
to break up the environment and represent it using a qualitative representation.

In a discretized environment, dynamic Bayesian networks (DBNs) are a convenient
way to encode predictive models. Most work on learning DBNs learn a network to predict
each variable at the next timestep for each primitive action, e.g. [Degris et al., 2006; Jonsson
and Barto, 2007; Strehl et al., 2007]. However, QLAP does not assume a set of primitive
actions, and QLAP works in environments where events may take more than one timestep.

QLAP learns two different types of DBN models. The first type of DBN models
are those that predict events on change variables (change DBNs). The second type of DBN
models are those for reaching magnitude values (magnitude DBNs). To learn change DBNs,
QLAP uses a novel DBN learning algorithm. Given the current discretization, QLAP tracks
statistics on all pairs of events to search for contingencies where an antecedent event leads
to a consequent event. When such a contingency is found, QLAP converts it to a DBN with
the antecedent event as the parent variable and the consequent event as the child variable.
QLAP then adds context variables to the DBN one at a time as they make the DBN more
reliable. For each DBN, QLAP also searches for a new discretization that will make the
DBN more reliable. This new discretization then creates new possible events and allows
new DBNs to be learned. This method is outlined in Figure 4.1.

This chapter first describes the novel algorithm for learning change DBNs. It then
describes the how magnitude DBNs are learned.

22

4.1 Searching for Contingencies

The search for change DBNs begins with a search for contingencies. A contingency repre-
sents the knowledge that if the antecedent event occurs, then the consequent event will soon
occur. An example would be if you flip a light switch, then the light will go off. QLAP
searches for contingencies by tracking statistics on pairs of events E1, E2 and extracting
those pairs into a contingency where the occurrence of event E1 indicates that event E2 is
more likely to soon occur than it would otherwise. In this section we define contingencies
in QLAP, and then we describe how QLAP identifies them.

4.1.1 Contingency Definition

To define contingencies in a continuous environment, we have to discretize both the vari-
able values and time. To discretize variable values, we create a special Boolean variable
event(t,X→x) that is true if event Xt→x occurs

event(t,X→x) =

{
true, Xt→x
false, otherwise

(4.1)

To discretize time, we use a time window. We define the Boolean variable soon(t,Y→y)
that is true if event Yt→y occurs within a time window of length k

soon(t,Y→y) =

{
true, ∃t ′ [t ≤ t ′ < t + k ∧ event(t ′,Y→y)]
false, otherwise

(4.2)

(Appendix C discusses how the agent learns k, which specifies the length of the time win-
dow.) With these variables, we define a contingency as

event(t,X→x)⇒ soon(t,Y→y) (4.3)

which represents the proposition that if the antecedent event Xt→x occurs, then the conse-
quent event Y→y will occur within k timesteps.

4.1.2 The Pairwise Search

QLAP looks for contingencies using a pairwise search by tracking statistics on pairs of
events X→x and Y→y to determine if the pair is a contingency of the form

event(t,X→x) ⇒ soon(t,Y→y) (4.4)

23

(, ,)soon t Y y(, ,)event t X x

antecedent

event
consequent

event

1()V t

()nV t

(, ,)soon t Y y(, ,)event t X x

context

variables

(a) Pairwise

search
for contingencies

(b) Found contingency converted

to DBN
(c) Add context variables and

landmarks

(d) Landmarks refine pairwise

search

…

consequent events

an
te

ce
d
en

t
ev

en
ts

Figure 4.1: (a) Do a pairwise search for contingencies that use one event to predict another.
The antecedent events are along the y-axis, and the consequent events are along the x-
axis, The color indicates the probability that the consequent event will soon follow the
antecedent event (lighter corresponds to higher probability). When the probability of the
consequent event is sufficiently high, it is converted into a contingency (yellow). (b) When
a contingency is found, it is used to create a DBN. (c) Once a DBN is created, context
variables are added to make it more reliable. (d) The DBN creates a self-supervised learning
problem to predict when the consequent event will follow the antecedent event. This allows
new landmarks to be found. Those landmarks create new events for the pairwise search.

QLAP learns a contingency E1 ⇒ E2 if when the event E1 occurs, then the event E2 is
more likely to soon occur than it would have been otherwise

Pr(soon(t,E2)|E1(t)) > Pr(soon(t,E2)) (4.5)

where Pr(soon(t,E2)) is the probability of event E2 occurring within a random window of
k timesteps. Specifically, the contingency is learned when

Pr(soon(t,E2)|E1(t))−Pr(soon(t,E2)) > θpen = 0.05 (4.6)

(This determination is made probabilistically using the beta distribution as described in Ap-
pendix B.) See [Griffiths et al., 2008] for alternative methods for identifying contingencies.

QLAP performs this search considering all pairs of events, excluding those where

1. The consequent event is a magnitude variable (since this are handled by the models
on magnitude variables introduced in Chapter 3 and discussed later in this chapter).

2. The consequent event is on a direction of change variable to the landmark value

24

[0] (since we want to predict changes that result in moving towards or away from
landmarks).

3. The magnitude variable corresponding to the direction of change variable on the con-
sequent event matches the magnitude variable on the antecedent event (since we want
to learn how the values of variables are affected by other variables).

4.2 Converting Contingencies to DBNs

In this section we describe how QLAP converts a contingency of the form

event(t,X→x)⇒ soon(t,Y→y) (4.7)

into a dynamic Bayesian network. As described in Chapter 2, a dynamic Bayesian network
(DBN) is a compact way to describe a probability distribution over time-series data. Dy-
namic Bayesian networks allow QLAP to identify situations when the contingency will be
reliable.

4.2.1 Adding a Context

The consequent event may only follow the antecedent event in certain contexts, so we also
want to learn a set of qualitative context variables C that predict when event Y→y will soon
follow X→x. This can be represented as a DBN r of the form

r = 〈C : event(t,X→x)⇒ soon(t,Y→y)〉 (4.8)

which we abbreviate to
r = 〈C : X→x⇒ Y→y〉 (4.9)

In this notation, event E1 = X→x is the antecedent event, and event E2 = Y→y is the
consequent event. We can further abbreviate this QLAP DBN r as

r = 〈C : E1⇒ E2〉 (4.10)

Figure 4.3 shows the correspondence between this notation and standard DBN no-
tation. QLAP DBNs are only applicable in cases where the antecedent event occurs. The
conditional probability table (CPT) of DBN r gives the probability that event Y→y will
soon follow event X→x for each qualitative value in context C. If the antecedent event does
not occur, then the CPT does not define the probability for the consequent event occurring.
If the antecedent event occurs, and the consequent event does follow soon after, we say that
the DBN succeeds. Likewise, if the antecedent event occurs, and the consequent event does
not follow soon after, we say that the DBN fails. These models are referred to as dynamic

25

Bayesian networks and not simply Bayesian networks because we are using them to model
a dynamic system. An example of a DBN learned by QLAP is shown in Figure 4.2.

[]xh (300,)xu

xh

0.50 0.98 0.97 0.04 0.50
xh

Pr

(, 2.5) [2.5] (2.5, 2.5) [2.5] (2.5,)

CPT

Figure 4.2: An example DBN. This DBN says that if the motor value of ux becomes
greater than 300, and the location of the hand, hx, is in the range −2.5≤ hx < 2.5, then the
variable ḣx will most likely soon become [+] (the hand will move to the right). (The limits
of movement of hx are −2.5 and +2.5, and so the prior of 0.5 dominates outside of that
range.)

The set C = {v1, . . . ,vn} consists of the variables in the conditional probability table
(CPT) of the DBN r = 〈C : E1⇒ E2〉. The CPT is defined over the product space

Q(C) =Q(v1)×Q(v2)×·· ·×Q(vn) (4.11)

Since C is a subset of the variables available to the agent, Q(C) is an abstraction of the
overall state space S

Q(C)⊆Q(v1)×Q(v2)×·· ·×Q(vm) = S (4.12)

where m≥ n is the number of variables available to the agent.1

4.2.2 Notation of DBNs

We define the reliability for q ∈Q(C) for DBN r as

rel(r,q) = Pr(soon(t,E2)|E1(t),q) (4.13)

which is the probability of success for the DBN for the value q ∈Q(C). (Note that we may
also say rel(r,s) is the reliability of DBN r in state s.) These probabilities come from the
CPT and are calculated using observed counts.

1In our experiments, we limit n to be 2.

26

1 2:r E E

 1 2, , , nv v v

a)

with
1()v t

2 ()v t

2(,)soon t E1(,)event t Eantecedent

event

context

variables

consequent event

()nv t

b)QLAP notation DBN representation

Figure 4.3: Correspondence between QLAP DBN notation and traditional graphical DBN
notation. (a) QLAP notation of a DBN. Context C consists of a set of qualitative variables.
Event E1 is an antecedent event and event E2 is a consequent event. (b) Traditional graphical
notation. Boolean parent variable event(t,E1) is true if event E1 occurs at time t. Boolean
child variable soon(t,E2) is true event E2 occurs within k timesteps of t. The other parent
variables are the context variables in C. The conditional probability table (CPT) gives the
probability of soon(t,E2) for each value of its parents. For all elements of the CPT where
event(t,E1) is false, the probability is undefined. The remaining probabilities are learned
through experience.

Best Reliability

The best reliability of a DBN gives the highest probability of success in any context state.
We define the best reliability brel(r) of a DBN r as

brel(r) = max
q∈Q(C)

rel(r,q) (4.14)

(We require 5 actual successes for q ∈ Q(C) before it can be considered for best reliability.
See Appendix B for a further explanation of how statistics are calculated.)

By increasing the best reliability brel(r) we increase the reliability of DBN r. And
we say that a DBN r is sufficiently reliable if at any time brel(r) > θSR = 0.75.

Entropy

The entropy of a DBN r = 〈C : E1⇒ E2〉 is a measure of how well the context C predicts
that event E2 will soon follow event E1. The entropy H(Y) of a random variable Y is given

27

by

H(Y) = −
∑

j

Pr(Y = y j) log2 Pr(Y = y j)

The conditional entropy H(Y |X) of a random variable Y given X is given by

H(Y |X) =
∑

i

H(Y |X = xi)Pr(X = xi)

and is the weighted average of the entropy of Y given X = xi, weighted by the probabilities
Pr(X = xi). Since we only consider the timesteps where event E1 occurs, we define the
entropy H(r) of a DBN r as

H(r) =
∑

q∈Q(C)

H(soon(t,E2)|q,E1(t))Pr(q|E1(t)) (4.15)

By decreasing the entropy H(r) of DBN r, we increase the determinism of DBN r.

4.3 Adding Context Variables

QLAP hillclimbs by iteratively adding context variables to DBNs to make them more reli-
able and deterministic. This hillclimbing process of adding one context variable at a time
is inspired by the marginal attribution process in Drescher’s [1991] schema mechanism.
By only considering the next variable to improve the DBN, marginal attribution decreases
the search space. Drescher spun off an entirely new model each time a context variable
was added, and this resulted in a proliferation of models. To eliminate this proliferation of
models, we instead modify the model by changing the context.

4.3.1 The Hillclimbing Measure

To improve a DBN r, QLAP hillclimbs on best reliability brel(r) until r is sufficiently
reliable, at which point QLAP hillclimbs on entropy H(r). QLAP initially hillclimbs on
best reliability because these DBN models will eventually be used for planning. In our
experiments, we have found this to be necessary to make good plans because we want to
find some context state in which the model is reliable. This allows the model to be used
for planning, because the agent can first get to that reliable context state. However, we
also want the predictive model to be deterministic, so after a model is sufficiently reliable,
QLAP hillclimbs on entropy reduction.

To quantify the hillclimbing procedure, we say that a DBN r′ is a sufficient im-
provement over DBN r if the Boolean function isModelImprovement(r,r′) returns true.
This function is given in algorithmic form in Algorithm 1. Essentially, if r is sufficiently

28

reliable, then r′ must provide a reduction in entropy. If r is not sufficiently reliable, then r′

must provide an increase in best reliability. The required amount of reduction in entropy or
increase in best reliability is determined by the relative sizes of the contexts for r and r′.

Algorithm 1 isModelImprovement
Require: A DBN r and a DBN r′ (r is the first argument, r′ is the second)

1: let |r| be the number of context variables in r
2: let |r′| be the number of context variables in r′

3: let ∆|r| = |r′|− |r|
4: let θpen = 0.05 be the needed improvement
5: if r is sufficiently reliable then
6: if r′ is not sufficiently reliable then
7: return false
8: end if
9: if |r| ≤ |r′| then

10: return H(r)−H(r′) > (1+∆|r|) ·θpen

11: else
12: return not isModelImprovement(r′,r)
13: end if
14: else
15: if |r| ≤ |r′| then
16: return brel(r′)−brel(r) > (1+∆|r|) ·θpen

17: else
18: return not isModelImprovement(r′,r)
19: end if
20: end if

4.3.2 The Hillclimbing Procedure

The hillclimbing procedure is not completely greedy. QLAP also considers the possibil-
ity that the DBN needs fewer context variables. So the hillclimbing algorithm for adding
context variables implemented in QLAP first sets aside the current context C. Then, QLAP
creates an entirely new context C′ by hillclimbing by adding variables to improve the DBN.
QLAP then uses the function isModelImprovement to compare the new context C′ with the
original context C to see if r′ with C′ is an improvement over r with the original context
C. The pseudocode and additional details for this process are shown in Algorithm 1 in
Appendix D.1.

29

4.4 Learning New Landmarks

Learning new landmarks allows the agent to see the world at a higher resolution. This
increase in resolution allows existing models to be made more reliable, and it allows new
models to be learned. QLAP has two mechanisms for learning landmarks. The first is to
learn a new landmark to make an existing DBN more reliable. The second is to learn a new
landmark that predicts the occurrence of an event.

4.4.1 New Landmarks on Existing DBNs

QLAP learns new distinctions based on previously-learned models (DBNs). For any par-
ticular DBN, predicting when the consequent event will follow the antecedent event is a
supervised learning problem. This is because once the antecedent event occurs, the envi-
ronment will determine whether the consequent event will occur. QLAP takes advantage of
this supervisory signal to learn new landmarks that improve the predictive ability of DBNs.

We first describe how landmarks can make DBNs more reliable. We then discuss
how QLAP searches for a landmark to improve a DBN, and we finally discuss the batch
process for learning landmarks.

How Landmarks Change DBNs

Inserting a new landmark v∗ into the open interval (v∗i ,v
∗
i+1) allows that interval to be re-

placed inQ(v) by two intervals and the dividing landmark: (v∗i ,v
∗), v∗, (v∗,v∗i+1). Adding a

new landmark v∗ into the quantity spaceQ(v) allows a new distinction to be made that may
transform a DBN r into a new DBN r′ in one of three ways.

1. The event E1 is of the form v→(v∗i ,v
∗
i+1), and E1 becomes v→(v∗i ,v

∗) or v→(v∗,v∗i+1).
2. v ∈ C and Q(C) is updated.
3. v /∈ C, but once v∗ is added to Q(v), then v is added to C.

QLAP can then determine if r′ is sufficient improvement over r using isModelImprovement.

The Search for a Landmark

For each DBN r = 〈C : E1⇒ E2〉, QLAP searches for a landmark on each magnitude and
motor variable v in each open interval q ∈Q(v) that will sufficiently improve r. This search
consists of four steps.

1. Find the best cutpoint. This is done using the method of Fayyad and Irani [1992].
To do this, each time the event E1 occurs, QLAP stores the value of variable ṽ and
also whether r was ultimately successful. (The growth in storage is not unlimited
because only the last 200 activations of each DBN are stored.) These values of ṽ are
then sorted, and QLAP considers a cutpoint c = (lb,ub) between each pair of values

30

lb, and ub, that are different (ub− lb > 0.001). This cutpoint c divides the set of
success or failure labels S into those S− whose associated value of ṽ is below c, and
those S+ whose associated value of ṽ is above c. These sets are used to calculate the
information gain Gc of putting a cutpoint at that location, where

Gc = H(S)− |S
−|
|S|

H(S−)− |S
+|
|S|

H(S+) (4.16)

and |S| indicates the number of labels in set S. QLAP performs this calculation for
all cutpoints and chooses the cutpoint c whose information gain G∗c is maximum.2

2. Determine if the cutpoint is good enough. QLAP then determines if the cutpoint c
is good enough to be a candidate landmark. The method of Fayyad and Irani [1993]
uses a criterion based on the minimum description length principle to determine if a
cutpoint should be accepted. In our experiments, we have found that this creates too
many landmarks. Instead, we add potential landmarks based on both the information
gain and the desirability of an additional landmark for an interval. To determine the
desirability for a landmark for an interval, we use the probability of the world state
being in this interval Pr(v = q). And we call the product G∗c ·Pr(v = q) the weighted
gain. We then consider a cutpoint c to be a candidate landmark if

G∗c > θIG and G∗c ·Pr(v = q) > θIG/2 (4.17)

where θIG = 0.30 in our experiments. As the agent learns more landmarks for a
variable v, then Pr(v = q) for any q will go down. This helps to keep QLAP from
learning too many landmarks.

3. Create the candidate landmark and potential new DBN. This is done to determine if
the cutpoint should be added as a new landmark. A chosen cutpoint c = (lb,ub) is
converted into a landmark v∗ with range [ub, ¯̃v] if ub is sufficiently close (within one
bin as described in Section 4.4.2) to the maximum observed value ¯̃v of ṽ, range [ṽ, lb]
if lb is sufficiently close to the minimum observed value ṽ of ṽ, and range [lb,ub]
otherwise.3

4. Adopt the landmark candidate if it sufficiently improves the DBN. A landmark can-
didate v∗ is adopted if it makes a sufficient improvement in r. This test is performed

2 If DBN r currently has a single context variable v1, then QLAP also looks for cutpoints within groups
of values of ṽ partitioned by the different qualitative values of v1. This partitioning is based on the qualitative
value that v1 had on the timesteps when event E1 occurred and the value of ṽ was stored. Our experiments have
shown that this finds some landmarks that the overall process misses.

3Since mathematically, [lb,ub] is a closed set, the range should be [lb+ε,ub−ε] because the values lb and
ub were taken from data that falls outside of this set. However, in the implementation, we just make the range
of the landmark [lb,ub]. Also note that for direction of change variables a range of [−0.1,0.1] is used for the
given landmarks at 0.

31

by updating r to r′ and checking if r′ is a sufficient improvement over r using the
saved 200 activations. Note that if the landmark is on the antecedent variable, then
we create two DBNs r′1 and r′2 corresponding to being below and above the landmark
respectively, and let r′ be the one with the higher number of successes.

This process for finding landmarks is done in a semi-batch fashion every 2000
timesteps. The pseudocode and additional details for this process are shown in Algorithm 2
in Appendix D.2.

4.4.2 New Landmarks to Predict Events

QLAP also learns new landmarks to predict events. QLAP needs this second landmark
learning process because some events may not be preceded by another known event. If
a landmark v∗ is found that co-occurs with some event E, then the agent can predict the
occurrence of event E by learning a DBN of the form 〈C : v→v∗⇒ E〉. QLAP searches for
such a landmark preceding event E by looking for a variable ṽ such that the distribution of
ṽ is significantly different just before the event E than otherwise.

Finding Differences in Distributions using Bins

To find these landmarks, QLAP needs to compare the distribution of a variable ṽ just before
an event E with the overall distribution of ṽ. Since we are looking at the continuous values
of variables, we use bins to estimate the distributions. We let the bin size for each bin bṽ

for variable ṽ be two times the average change value (excluding the first timestep t = 0). A
change is determined to occur if t > 1 and |ṽ(t)− ṽ(t− 1)| > 0.001. QLAP then creates a
landmark v∗ for a bin bṽ when

Pr(ṽt−1 ∈ bṽ|E(t))−Pr(ṽt−1 ∈ bṽ) > θE (4.18)

where θE = 0.30, and bṽ corresponds to the bin that has the highest value of Pr(ṽt−1 ∈
bṽ|E(t))−Pr(ṽt−1 ∈ bṽ). The range [lb,ub] of the landmark corresponding to bṽ is the size
of the bucket bṽ.

These probabilities are computed under two different normalization conditions. The
first is that QLAP normalizes over three buckets in each direction of bṽ. This allows QLAP
to find local spikes in differences of the probability distributions. The second normalization
condition is to normalize the probability over all of the buckets. QLAP first looks for
a landmark using the first normalization condition. If none is found, QLAP looks for a
landmark using the second normalization condition. The pseudocode and additional details
for this process are shown in Algorithm 3 in Appendix D.3.

32

4.5 Magnitude DBN Models

A magnitude value can be less than, greater than, or equal to a qualitative value. We want
to have models for a variable ṽ reaching a qualitative value v∗. Intuitively, if we want v = v∗

and currently v(t) < v∗, then we need to set v̇ = [+] as is shown in Figure 4.4. This section
describes how this process is modeled.

1

*v()v t

Figure 4.4: Moving to a landmark on a number line.

For each magnitude variable v and each qualitative value q ∈ Q(v), QLAP creates
two models, one that corresponds to approaching the value v = q from below on the number
line, and another that corresponds to approaching v = q from above. For each magnitude
variable Y and each value y ∈Q(Y), these models can be written as

Ẏ→[+] ⇒ Y→y (4.19)

Ẏ→[−] ⇒ Y→y (4.20)

The first one means that if Yt < y and Ẏ = [+], then eventually event Y→y will occur
(the second model is analogous in this discussion). As the notation suggests, we can treat
Ẏ→[+] ⇒ Y→y similarly to how we treat a contingency, and we can learn context variables
for when this model will be reliable. These models are based on the test-operate-test-exit
(TOTE) models of Miller et al. [1960].

Magnitude DBNs do not use the “soon” predicate because how long it takes to reach
a qualitative value is determined by how far away the variable is from that value. Instead,
statistics are gathered on magnitude DBNs when the agent sets Ẏ = [+] to bring about Y→y.
The first model is successful if Y→y occurs while Ẏ = [+], and it fails if the agent is unable
to maintain Ẏ = [+] long enough to bring about event Y→y.

Then we can use this supervisory signal to add a context just like with change DBNs.
When we do this, we get magnitude DBN models r+ and r− of the form

r+ = 〈C : do(t,Ẏ→[+])⇒ reach(t,Y→y)〉 (4.21)

r− = 〈C : do(t,Ẏ→[−])⇒ reach(t,Y→y)〉 (4.22)

where the parent variable do(t,E) is a predicate analogous to event(t,E) that is true if the
agent is working to bring about E and the value is moving towards E. And the child variable
reach(t,E) is analogous to soon(t,E) and is true if the value reaches E. These DBNs can

33

be abbreviated to

r+ = 〈C : Ẏ→[+]⇒ Y→y〉 (4.23)

r− = 〈C : Ẏ→[−]⇒ Y→y〉 (4.24)

Two such magnitude DBNs are created for each qualitative value on each magnitude
variable.4 Like change DBNs, magnitude DBNs will be used in planning as described in
Chapter 5.

4While context variables are learned on magnitude DBNs, experiments showed that landmarks learned on
these models were not useful to the agent, so these models are not used for learning landmarks in QLAP.

34

Chapter 5

From Models to Actions and Plans

QLAP uses the learned models to create plans for performing actions. There are two
broad planning frameworks within AI: STRIPS-based goal regression [Nilsson, 1980], and
Markov Decision Process (MDP) planning [Puterman, 1994]. Goal regression has the ad-
vantage of working well when only some of the variables are relevant, and MDP planning
has the advantage of providing a principled framework for probabilistic actions [Boutilier
et al., 1999]. Planning in QLAP was designed to exploit the best of both frameworks. As
described in Chapter 1, a broad principle of QLAP is that the agent should fragment the
environment to make learning and planning more tractable. QLAP uses MDP planning to
plan within each learned fragment, and QLAP uses goal regression to stitch the fragments
together.

QLAP creates an action to achieve each qualitative value of each variable. QLAP
creates plans from the learned models, and each plan is a different way to perform an
action. An action can have zero, one, or many plans. If an action has no plans it cannot
be performed. If an action has multiple plans, then the action can be performed in more
than one way. The actions that can be called by each plan are QLAP actions to bring about
qualitative events. This stitches the plans together and leads to a hierarchy because plans
call other QLAP actions as if they were primitive actions. This hierarchical action network
encodes all of the learned skills of the agent. This process is shown in Figure 5.1.

Each plan is based on an MDP, and the policy for each plan is learned using a
combination of model-based and model-free methods. QLAP uses MDP planning instead
of only goal regression because the transitions are probabilistic. And since the variables in
the state space of the plan only come from the DBN model, we minimize the problem of
state explosion common to MDP planning. Additionally, we use MDP planning instead of
a more specific planning algorithm such as RRT [Kuffner Jr and Lavalle, 2000] because the
actions taken by the plan may be arbitrary, such as “hit the block off the table.” And RRT
and similar algorithms are designed specifically for moving in space.

In this chapter, we first define actions and plans in QLAP. We then discuss how
change and magnitude DBNs are converted into plans. We then discuss how QLAP can

35

…

…

(,)jQ s a

()

arg max (,)
j

j
a

s

Q s a

(,)iQ s a

()
arg max (,)

i

i
a

s
Q s a

(,)kQ s a

()
arg max (,)

k

k
a

s
Q s a

(,)lQ s a

()
arg max (,)

l

l
a

s
Q s a

Action
Y→y

Z

W

Y yX x

Action
X→x

(a)

(b)

(c) (d)

Figure 5.1: Planning in QLAP. (a) QLAP creates an action for each qualitative value of each
variable. This action is to bring variable Y to value y. (b) Each action can have multiple
plans. Each plan is a different way to perform the action. The MDP plan is represented as
an option oi with policy πi. (c) Plans are created from models. The state space for an MDP
is the cross product of the values of X , Y , Z, and W from the model (although more can
be added if needed). (d) The actions for each plan are QLAP actions to move to different
locations in the state space of the MDP. This is reminiscent of goal-regression. In this figure,
we see that one of the actions for plan oi is to call the QLAP action to bring about X→x.
This link results from event X→x being the antecedent event of the DBN model to bring
about event Y→y.

learn when variables need to be added to the state space of a plan, and we conclude with a
description of how actions are performed in QLAP.

5.1 Actions and Plans in QLAP

Actions are how the QLAP agent brings about changes in the world. An action a(v,q) is
created for each combination of qualitative variable v and qualitative value q ∈ Q(v). An
action a(v,q) is called by the agent and is said to be successful if v = q when it terminates.
Action a(v,q) fails if it terminates with v 6= q. Statistics are tracked on the reliability of
actions. The reliability of an action a is denoted by rel(a), which gives the probability of
succeeding if it is called.

When an action is called, the action chooses a plan to carry it out. Each plan is
associated with only one action, and an action can have multiple different plans where each
plan is a different way to perform the action. This gives QLAP the advantage of being able

36

to use different plans in different situations instead of having one big plan that must cover
all situations. As with actions, we say that a plan associated with action a(v,q) is successful
if it terminates with v = q and fails if it terminates with v 6= q.

Each plan is represented as a policy πi over an MDP Mi = 〈Si,Ai,Ti,Ri〉. As
described in Chapter 2, a Markov Decision Process (MDP) is a framework for temporal
decision making. QLAP learns multiple MDPs, and each MDP represents a small part of
the world. These MDPs come from the models learned by QLAP. The actions available for
each MDP are a subset of all the QLAP actions. In this way, the actions and plans of QLAP
are tied together and planning takes the flavor of goal regression.

We can think of this policy πi as being part of an option oi = 〈Ii,πi,βi〉. As de-
scribed in Chapter 2, an option [Sutton et al., 1999] is like a subroutine that can be called to
perform a task. An option oi is typically expressed as the triple oi = 〈Ii,πi,βi〉 where Ii is
a set of initiation states, πi is the policy, and βi is a set of termination states or a termination
function. Options in QLAP follow this pattern except that πi is a policy over QLAP actions
instead of being over primitive actions or options.

We use the terminology of a plan being an option because options are common in
the literature, and because QLAP takes advantage of the non-Markov termination function
βi that can terminate after a fixed number of timesteps. However, plans in QLAP differ from
options philosophically because options are usually used with the assumption that there is
some underlying large MDP. QLAP assumes no large, underlying MDP, but rather creates
many little, independent MDPs that are connected by actions. Each small MDPMi created
by QLAP has one policy πi.

See Table 5.1 for a summary of the major aspects of models, actions, and plans.

5.2 Converting Change DBNs to Plans

When a DBN of the form ri = 〈C : X→x ⇒ Y→y〉 becomes sufficiently reliable1 it is
converted into a plan to bring about Y→y. This plan can then be called by the action
a(Y,y).

This plan is based on an MDPMi. In this section, we will first describe how QLAP
creates MDPMi from a DBN ri. We will then describe how QLAP learns a policy for this
MDP. And finally, we will describe how this policy is mapped to an option.

5.2.1 Creating the MDP from the DBN

QLAP converts DBNs of the form ri = 〈C : X→x⇒ Y→y〉 to an MDP of the formMi =
〈Si,Ai,Ti,Ri〉. The state space Si comes from the variables in DBN ri. The set of actions
Ai are QLAP actions to bring the agent to the different states of Si. The transition function
Ti comes from the CPT of ri and the reliability rel(a) of different actions a ∈ Ai, and the

1There are other restrictions that will be discussed in Chapter 6.

37

Table 5.1: Objects in QLAP

Object Properties Description
Model r = 〈C : X→x⇒ Y→y〉 model of the environment
– rel(r) overall reliability of r
– rel(r,s) reliability of r in state s
– rel(r,q) reliability of r in context value q ∈Q(C)
– brel(r) best reliability of r
– sufficiently reliable if brel(r) > θSR = 0.75
– H(r) conditional entropy of r
Action a(v,q) action to set qualitative variable v to q ∈Q(v)
– rel(a) reliability of action a
– called when action is started by agent
– processed action has already been called, but has not terminated
– success if terminates with v = q
– fail if terminates with v 6= q
Plan o = 〈I,π,β 〉 a way to perform an action a(v,q)
– rel(o) overall reliability of option o
– rel(o,s) reliability of option o in state s
– brel(o) best reliability of option o
– called when plan is started by agent
– processed plan has already been called, but has not terminated
– success if terminates with v = q
– fail if terminates with v 6= q

reward function comes from achieving the goal state Y = y. The details are provided in the
rest of this section.

Defining the State Space

The state space Si for Mi consists of the Cartesian product of the values of X , Y and C.
Recall thatQ(v) is the set of qualitative values for qualitative variable v. The state space Si

for MDPMi is
Si =Q(C)×Q(X)×Q(Y) (5.1)

(we will see in Section 5.4 how more variables can be added to state spaces).

Defining the Action Space

The qualitative representation defines a set of actionsA. Recall that QLAP creates an action
a(v,q) to achieve each qualitative value q ∈Q(v) for each qualitative variable v. The action

38

space Ai for DBN ri = 〈C : X→x⇒ Y→y〉 is the set of actions to reach each state of the
context C plus one or more actions related to setting the antecedent event. More formally,
the set of actions Ai ⊆A consists of

1. The set of actions AC that allows the agent to move within the context

AC = {a(v,q)|v ∈ C and q ∈Q(v)} (5.2)

2. The action a(X ,x) that brings about the antecedent event of ri. And if X is a magni-
tude variable, the actions to each value x ∈Q(X),

Thus, the set of actions Ai is

Ai =

{
AC ∪{a(X ,q)|q ∈Q(X)}, if X is a magnitude variable
AC ∪{a(X ,x)}, otherwise

(5.3)

Not all actions of Ai are applicable in all states. We denote As
i ⊆ Ai as the set of actions

applicable in state s. To createAs
i fromAi, QLAP subtracts each action a(v,q) fromAi that

meets any of the following criteria in state s:

1. v is a magnitude variable and v = q
2. a(v,q) would cause infinite regress by causing action a(Y,y) to be called again. For

example, consider if ri were of the form

r = 〈{Y} : X→x⇒ Ẏ→[+]〉 (5.4)

If Y = (−∞,4) in state s, then the action a(Y, [4]) would need to make Ẏ→[+] and
this would lead to a loop. Therefore, action a(Y, [4]) is not applicable in state s. (This
is related to choosing plans and infinite regress as discussed in Chapter 6.)

3. v is a magnitude variable on the antecedent event (meaning v is variable X), and the
action a(X ,q) does not make the antecedent event X→x more easily achievable.

Recall from Chapter 3 that events on magnitude variables have a direction. In the
DBN ri = 〈C : X→x⇒Y→y〉, if X is a magnitude variable, then the antecedent event
is either ↑X→x or ↓X→x. The event ↑Xt→x means that Xt−1 < x and Xt = x, and the
event ↓Xt→x means that Xt−1 > x and Xt = x.

An action makes the event ↑X→x more easily achievable if currently X > x and the
action is of the form a(X ,q) with q < x. Likewise, an action makes the event ↓X→x
more easily achievable if currently X < x and the action is of the form a(X ,q) with
q > x.

Because change plans are based on contingencies, the action to bring about the
antecedent event is special. When this action terminates successfully, the agent waits k

39

timesteps (the length of the learned time window) to see if the consequent event will oc-
cur. If the consequent event occurs within this time window, then the plan terminates suc-
cessfully because v = q. If it does not, then the plan continues by calling another action
according to the learned policy.

Defining the Transition Function

To construct the transition function Ti : Si×As
i →Si, QLAP must compute a set of possible

next states for each s ∈ Si and a ∈ As
i . It must then compute the distribution P(s′|s,a). To

compute P(s′|s,a), QLAP uses the statistics gathered on DBN ri and the statistics gathered
to estimate the probability rel(a) of success for action a. To keep planning tractable, QLAP
limits the number of next states with positive probability to two. We organize the discussion
of the transition probabilities based on the type of action:

1. Moving to a context value. For an action a(v,q) (which we abbreviate with a) with
v ∈ C to change the value of a context variable, QLAP considers two possible next
states.

(a) State s′1 where the action is successful and the only change is that v = q.
(b) State s′2 where the action fails and s′2 = s.

The probability distribution over s′ then is Pr(s′1|s,a) = rel(a) and Pr(s′2|s,a) = 1−
rel(a).

2. Achieving the antecedent event. For the action a(X ,x) to bring about the antecedent
of ri, QLAP also considers two possible next states.

(a) State s′1 is where the antecedent event occurs2 and the consequent event follows,
so that s′1 is the same as s except that X = x and Y = y.

(b) State s′2 is where the antecedent event occurs but the consequent event does not
follow, so that s′2 is the same as s except that X = x.

The probability distribution over s′ is Pr(s′1|s,a) = rel(ri,s) and Pr(s′2|s,a) = 1−
rel(ri,s).

The one exception to this is if the antecedent event is on a magnitude variable, and
the state is on the “wrong side.” If X is a magnitude variable, then the antecedent
event is either ↑X→x or ↓X→x. For the event ↑Xt→x, if state s has X > x, then the
state is on the wrong side to make the event occur (analogously for ↓Xt→x). In this
case, Pr(s′1|s,a) = 0 and Pr(s′2|s,a) = 1.

2Or if it is already satisfied in the case of a direction of change variable (same for (b)).

40

Defining the Reward Function

The reward function penalizes each action with a cost of 2, but gives a reward of 10 for
reaching the goal of Y = y. Formally, this is written as

R(s,a,s′) =

{
10−2, if Y = y in state s′

−2, otherwise
(5.5)

5.2.2 Learning a Policy for the MDP

QLAP uses three different methods to learn a policy for an MDP. (1) QLAP uses the tran-
sition model described above to do dynamic programming to learn the policy. (2) As the
agent further experiences the world, this policy is updated using the temporal difference
learning method Sarsa. (3) And as the model improves, the policy is updated using Dyna.

Planning Based on a Transition Model: Dynamic Programming

Since the transition function Ti and the reward function Ri have been defined, QLAP can
initially learn the policy πi by learning a Q-table using dynamic programming with value
iteration [Sutton and Barto, 1998]. As described in Chapter 2, this equation is

Q∗(s,a) =
∑

s′
P(s′|s,a)

[
R(s,a,s′)+ γ max

a′
Q∗(s′,a′)

]
(5.6)

with γ = 0.9.

Learning from Experience: Sarsa

Dynamic programming uses the statistics gathered on individual actions to estimate transi-
tion probabilities. But the agent will gather experience in the world, so we do not have to
rely on these estimates. We can use that experience to update the value function. We do this
using the temporal difference learning method Sarsa as described in Chapter 2.

As the option executes, each time an action terminates, the agent performs a Sarsa
update [Sutton and Barto, 1998]. As described in Chapter 2, the Sarsa update equation with
eligibility traces is

∀s,a : Q′(s,a) = Q(s,a)+ e(s,a)α[r′+ γQ(s′,a′)−Q(s,a)] (5.7)

where r′ = R(s)− .01t where t is the number of timesteps for the option and

R(s) =

{
10, if Y = y in state s
0, otherwise

(5.8)

41

And the (replacing) eligibility trace is

e(s,a)← λγe(s,a) (5.9)

with λ = 0.9 and γ = 0.9.
QLAP does not discount exponentially based on the lower-level timesteps but in-

stead treats MDP transitions as a single timestep. We do this because we are using a qual-
itative representation, and how long it takes to achieve an event may be a function of how
far away it is from the landmark. However, QLAP does reward faster transitions as can be
noted from the Sarsa reward r′ = R(s)− .01t.

Updating the Plan with a Better Transition Model: Dyna

As the agent gathers more statistics, its transition model may be improved. QLAP uses
the Dyna framework to incorporate these possible improvements in the transition model.
As described in Chapter 2, Dyna is a framework for incorporating knowledge gained from
experience with knowledge gained from planning. Using the current model, QLAP updates
each state and action value of the Q table once using the equation

∀s,a : Q′(s,a) = (1−α)Q(s,a)+α

∑
s′

P(s′|s,a)
[

R(s,a,s′)+ γ max
a′

Q(s′,a′)
]

(5.10)

The learning rate α = 0.2.

5.2.3 Mapping the Policy to an Option

An option has the form oi = 〈Ii,πi,βi〉. We have described how the policy πi is learned.
When an option oi is created for a DBN ri = 〈C : X→x⇒ Y→y〉, the set of initiation states
Ii is the set of all states.

The termination function βi terminates option oi when it succeeds (the consequent
event occurs) or when it exceeds resource constraints (300 timesteps, or 5 action calls) or
when the agent gets stuck. The agent is considered stuck if none of the self variables (see
Chapter 5 for a discussion of how the agent learns which variables are part of “self”) or
variables in Si change in 10 timesteps.

5.3 Converting Magnitude DBNs into Plans

As discussed in Chapter 4, each qualitative value y ∈ Q(Y) on each magnitude variable Y
has two models

r+ = 〈C : Ẏ→[+]⇒ Y→y〉 (5.11)

r− = 〈C : Ẏ→[−]⇒ Y→y〉 (5.12)

42

that correspond to achieving the event Y→y from below and above the value Y = y, respec-
tively. Both of these models are converted into a plan to achieve Y→y. The result of this
is that each action a(v,q) on a magnitude variable has two plans. One plan to perform the
action when v < q, and another plan to perform the action when v > q. Each magnitude
DBN ri is converted into a plan in the form of an MDPMi. For MDPMi, the state space
Si, the set of available actions As

i , the transition function Ti, and the reward function Ri are
computed similarly as they are for change plans. The state space Si and reward function Ri

are created in exactly the same way. The action spaceAs
i and the transition function Ti have

some differences, as will be explained in the following two subsections.

5.3.1 Defining the Action Space

The action space is computed as described in Section 5.2.1 with the following modifica-
tions:

1. Magnitude options have a special action called wait. For the option to reach v = q
from below on the number line, the action wait can be taken if the value of variable
v is less than q and is moving towards q. Similarly for reaching v = q from above the
number line. The wait action is added to Ai but it is only applicable in states s ∈ Si

where the antecedent event is satisfied. For example, for r+, it must be that Ẏ = [+].
2. If the antecedent event is satisfied, then the action to bring about the antecedent event

is not applicable.
3. There are no applicable actions on the “wrong side” of a magnitude DBN. For exam-

ple, if the model is r+ = 〈C : Ẏ→[+]⇒ Y→[2.0]〉 and Y = (2.0,+∞) in state s, then
there are no applicable actions in state s.

The wait action keeps the agent waiting (and maintaining its current motor value)
as long as the antecedent event is satisfied. If the consequent event occurs, it terminates
successfully. If not, it calls another action according to the learned policy.

5.3.2 Defining the Transition Function

Actions to move to a context value have the same transition probabilities as they do for
change plans. For magnitude plans, the transition to achieve the antecedent event is cal-
culated in the same way as actions to achieve a context value. For the wait action, the
probability of success comes from rel(r,s) of model r, just like with direction of change
DBNs.

5.4 Improving the State Space of Plans

The state space of a plan consists of the Cartesian product of the quantity spaces Q(v) of
the variables in the model from which it was created. But what if there are variables that

43

were not part of the model, but that are nonetheless necessary to successfully carry out the
plan? To learn when new variables should be added to plans, QLAP keeps statistics on
the reliability of each plan and uses those statistics to determine when a variable should be
added.

5.4.1 Tracking Statistics on Plans

QLAP tracks statistics on plans the same way it does when learning models. For change
DBN models, QLAP tracks statistics on the reliability of the contingency. For magnitude
models, QLAP tracks statistics on the ability of a variable to reach a qualitative value if
moving in that direction. For plans, QLAP tracks statistics on the agent’s ability to success-
fully complete the plan when called.

To track these statistics on the probability of a plan o being successful, QLAP cre-
ates a second-order model

r2
o = 〈Co : call(t,o)⇒ succeeds(t,o)〉 (5.13)

The child variable of second-order DBN r2
o is succeeds(t,o), which is true if option o suc-

ceeds after being called at time t and is false otherwise. The parent variables of r2
o are

call(t,o) and the context variables in Co. The Boolean variable call(t,o) is true when the
option is called at time t and is false otherwise. When created, model r2

o initially has an
empty context, and context variables are added in as they are for magnitude and change
models. The notation for these models is the same as for magnitude and change models:
QLAP computes rel(o), rel(o,s) and brel(o). Therefore a plan can also be sufficiently
reliable if at any time brel(o) > θSR = 0.75.

5.4.2 Adding New Variables to the State Space

Second-order models allow the agent to identify other variables necessary for the success
of an option o because those variables will be added to its context. Each variable that is
added to r2

o is also added to the state space Si of its associated MDPMi. For example, for
a plan created from model ri = 〈C : X→x⇒ Y→y〉, the state space Si is updated so that

Si =Q(Co)×Q(C)×Q(X)×Q(Y) (5.14)

(variables in more than one of Co, C, {X}, or {Y} are only represented once in Si). For both
magnitude and change options, an action a(v,q) where v ∈ Q(Co) is treated the same way
as those where v ∈Q(C).

44

…

(,)jQ s a

()

arg max (,)

j

j
a

s

Q s a

(,)iQ s a

()

arg max (,)
i

i
a

s

Q s a

Action
Y→y

…

(,)jQ s a

()

arg max (,)

j

j
a

s

Q s a

(,)iQ s a

()

arg max (,)
i

i
a

s

Q s a

Action
X→x

motor
action

…
call/

process

call/

process

call/

process

motor

motor

motor

…

Figure 5.2: When an action is called, it chooses a plan. Plans, in turn, choose actions based
on the plan’s policy. This process continues until a motor action is reached, at which point
the motor value is passed back up. The action is then processed until it terminates. While it
is being processed, the plans below it will call actions according to their policies. So there
is always a path from the called action to a motor action, but that path changes as the action
is processed.

45

5.5 Performing Actions

QLAP actions are performed using plans, and these plans call other QLAP actions. This
leads to a hierarchy of plans and actions. If an action a(u,q) is called on a motor variable
u, then QLAP returns a random motor value within the range covered by the qualitative
value u = q. In the remaining part of this section, we explain how non-motor actions are
performed by the QLAP agent.

5.5.1 Calling and Processing Actions

When an action is called, it chooses a plan and then starts executing the policy of that
chosen plan. Executing that policy results in more QLAP actions being called, and this
process continues until a motor action is reached.3 At which point, the motor value is
passed back up. This hierarchical calling of actions results in a call list.4 See Figure 5.2.

This hierarchical structure of actions and plans means that multiple actions will
be performed simultaneously. Each plan only keeps track of what action it is currently
performing. And when that action terminates, the next action is called according to the
policy of the plan. So as the initial action called by the agent is being processed, the path
between that initial action and a motor actions continually changes.5 See Appendix F for
further details.

5.5.2 Terminating Actions

An action a(v,q) terminates if v = q, in which case it succeeds. It also terminates if it fails.
An action fails if

1. it has no plans, or
2. for every plan for this action, the action to bring about the antecedent event of the

plan is already in the call list, or
3. its chosen plan fails.

Similar to an action, a plan to bring about v = q terminates if v = q, in which case it
succeeds. It also terminates if it fails. A plan to bring about v = q fails if

1. the termination function β is triggered by resource constraints, or
2. there is no applicable action in the current state, or
3. the action chosen by the policy is already in the call list, or
4. the action chosen by the policy immediately fails when it is called.
3The issue of infinite regress is discussed in Chapter 6.
4Note that we use a list instead of a stack. This means that when the top level action is completed, all actions

below are terminated.
5Note that if a direction of change action is called as an action from some plan and it is already achieved,

then its plan treats it as not being achieved. This is necessary because it may need to get the motor command
that achieves it to support some higher action.

46

5.6 Conclusion

This chapter described how QLAP creates actions and plans and how they are performed.
An action on a change variable can have zero, one, or multiple plans. An action on a
magnitude variable has two plans for reaching that value from above and below on the
number line.

47

Chapter 6

Exploration and Development

The QLAP agent explores and learns autonomously without being given a task. This au-
tonomous exploration and learning raises many issues. For example, how can the agent
decide what is worth exploring? And, as the agent explores, it learns new representations.
How can it keep from learning unnecessary representations and getting bogged down? And
should the agent use the same criteria for learning all representations? Or should it treat
some representations as especially important? And finally, can the agent learn that some
parts of the environment can be controlled with high reliability and low latency so that they
can be considered part of “self”?

Previous chapters have explained how QLAP learns representations that take the
form of landmarks, DBNs, plans, and actions. This chapter explains how learning in QLAP
unfolds over time. We first discuss how the agent explores the environment. We then
discuss developmental restrictions that determine what representations the agent learns and
the order in which it learns them. We then discuss how QLAP pays special attention to
goals that are hard to achieve. And finally, we discuss how the agent learns what is part of
“self.”

6.1 Exploration

The QLAP agent explores the environment autonomously without being given a task. In-
stead of trying to learn to do a particular task, the agent tries to learn to predict and control
all of the variables in its environment. However, this raises difficulties because there might
be many variables in the environment, and some may be difficult or impossible to predict
or control. This section explains how the agent determines what should be explored and the
best way to go about that exploration.

Initially, the agent motor babbles for 20,000 timesteps (see Appendix E for a de-
scription of how motor babbling is done). After that point, QLAP begins to practice its
learned actions. An outline of the execution of QLAP is shown in Algorithm 2. The agent

48

continually makes three types of choices during its exploration. These choices vary in time
scale from coarse to fine:

1. The agent chooses a learned action a(v,q) to practice.
2. The agent chooses the best plan oi for performing the action a(v,q).
3. Within plan oi, the agent chooses the action based policy πi.

6.1.1 Choosing a Learned Action to Practice

One method for choosing where to explore is to measure prediction error and than to mo-
tivate the agent to explore parts of the space for which it currently does not have a good
model. This form of intrinsic motivation is used in [Huang and Weng, 2002; Marshall
et al., 2004]. However, focusing attention on states where the model has poor prediction
ability can cause the agent to explore spaces where learning is too difficult.

Schmidhuber [1991] proposed a method whereby an agent learns to predict the
decrease in the error of the model that results from taking each action. The agent can then
choose the action that will cause the biggest decrease in prediction error. Oudeyer, Kaplan,
and Hafner [2007] apply this approach with a developing agent and have the agent explore
regions of the sensory motor space that are expected to produce the largest decrease in
predictive error. Their method is called Intelligent Adaptive Curiosity (IAC).

QLAP uses IAC to determine which action to practice. After the motor babbling
period of 20,000 timesteps, QLAP chooses a motor babbling action with probability 0.1,
otherwise it uses IAC to choose a learned action to practice. Choosing a learned action
to practice consists of two steps: (1) determine the set of applicable actions that could be
practiced in the current state s, and (2) choose an action from that set.

Determining the Set of Applicable Actions

The set of applicable actions to practice consists of the set of actions that are not currently
accomplished, but could be performed. For a change action, this means that the action must
have at least one plan. For a magnitude action a(v,q), this means that if vt < q then a(v̇, [+])
must have at least one plan (and similarly for vt > q).

Choosing the Action from the Set of Applicable Actions

QLAP chooses an action to practice by assigning a weight wa to each action a in the set
of applicable actions. The action is then chosen randomly based on this weight wa. The
weights are assigned using Intelligent Adaptive Curiosity (IAC) [Oudeyer et al., 2007].
IAC first measures the change in the agent’s ability to perform the action over time and then
chooses actions where that ability is increasing.

49

To use IAC to compute wa for action a, we store the reliability rel(a) each time
action a terminates. We then let

wa = max(0.001,relnew
a − relold

a) (6.1)

where relnew
a is the average reliability of a after the most recent θ = 25 calls, and relold

a is
the average reliability of a over the θ = 25 calls prior to the most recent θ = 25 calls.1

To compute wa using Equation 6.1, action a must have been called at least 2θ = 50
times. For actions where an accurate estimate of improvement cannot be calculated because
they have been called fewer than 50 times, we want QLAP to choose actions that are not
too reliable nor unreliable, yet likely to succeed in the current state s. To do this, QLAP
chooses a plan o as described in Section 6.1.2 for action a and then computes wa as

wa = H(rel(a)) · rel(o,s) (6.2)

Recall that H is a measure of entropy. Entropy will be highest when the reliability of action
a is 0.50.

QLAP chooses actions to practice so that it can get better at performing them and so
that it can see the effects of the actions. Actions for direction of change variables sometimes
need to be maintained for a short while so that their effects can be observed. To do this,
when the agent chooses a direction of change action to practice and that action is completed,
that agent continues to give the last motor value for k timesteps.

6.1.2 Choosing the Best Plan to Perform an Action

When an action is called, it chooses a plan to perform the action. QLAP seeks to choose
the plan that is most likely to be successful in the current state. To compare plans, QLAP
computes a weight ws

o for each plan o in state s. To compute the weight ws
o for plan o in state

s, QLAP computes the product of the reliability of the DBN r that led to the plan rel(r,s)
and the reliability of the second-order DBN rel(o,s) so that

ws
o = rel(r,s) · rel(o,s) (6.3)

To choose the plan to perform the action, QLAP uses ε-greedy action plan selection
(ε = 0.05). With probability 1− ε , QLAP chooses the plan with the highest weight. And
with probability ε it chooses a plan randomly. To prevent loops in the calling list, a plan
whose DBN has its antecedent event already in the call list is not applicable and cannot be
chosen.

1IAC actually has two parameters: a smoothing parameter θ , and a time window parameter τ . QLAP sets
θ = τ for simplicity.

50

6.1.3 Choosing an Action within a Plan

Recall from Chapter 5 that QLAP learns a Q-table for each plan that gives a value for
taking each action a in state s. Here again, QLAP uses ε-greedy selection. With probability
1− ε , in state s, QLAP chooses action a that maximizes Qi(s,a), and with probability ε ,
QLAP chooses a random action. This action selection method balances exploration with
exploitation [Sutton and Barto, 1998].

Algorithm 2 The Qualitative Learner of Action and Perception (QLAP)
1: for t = 0 : ∞ do
2: sense environment
3: convert input to qualitative values using current landmarks
4: update statistics for learning new contingencies
5: update statistics for each DBN
6: if mod(t,2000) == 0 then
7: learn new DBNs
8: update contexts on existing DBNs
9: delete unneeded DBNs and plans

10: if mod(t,4000) == 0 then
11: learn new landmarks on events
12: else
13: learn new landmarks on DBNs
14: end if
15: convert DBNs to plans
16: end if
17: if current exploration action is completed then
18: choose new exploration action and action plan
19: end if
20: get low-level motor command based on current qualitative state and plan of current

exploration action
21: pass motor command to robot
22: end for

6.2 Developmental Restrictions

The agent learns autonomously by constructing representations in the form of landmarks,
DBNs, and plans.

adding landmarks leads to new events, new DBNs, and new actions.

adding DBNs leads to new plans and new landmarks.

51

adding plans leads to new policies and Q-tables

When each of these representations is added it leads to resource usage and to the
possibility of more new representations being added. There is a danger that the new rep-
resentations will overwhelm the resources of the agent. This section describes restrictions
that QLAP uses to keep resource usage manageable.

6.2.1 When an Action becomes Sufficiently Reliable

When an agent is able to do an action sufficiently well, QLAP is able to free up resources
and stop allocating new resources to learn it. An action a(v,q) is sufficiently reliable if at
any time rel(a) > θSR = 0.75. When an action a(v,q) is sufficiently reliable, QLAP saves
resources by

1. Not learning new event landmarks on event v→q (Chapter 4, Section 4.2).
2. Not learning additional plans for action a(v,q) (Chapter 5, Section 2).
3. Not learning new DBNs with the consequent event v→q (Chapter 4, Section 2).
4. Deleting DBNs with the consequent event v→q that are not currently plans for action

a(v,q).

6.2.2 Limiting the Number of Plans

The plans that QLAP creates are relatively small because they only include the variables
necessary to carry out the plan. But with MDP planning, even small plans consume re-
sources, so QLAP limits their number. Each action may have at most three plans. If each of
these plans has been called fewer than 30 times or is sufficiently reliable, then no plans will
be replaced. But, if this is not the case, then the plan with the lowest reliability rel(o) that
has been called more than 30 times can be replaced by a new plan if there is one to be added
to the action. Also, any plan whose overall reliability rel(o) falls below 0.05 is removed.

When to Convert a Change DBN to a Plan

As described in Chapter 5, Section 2, a DBN r must be sufficiently reliable to be converted
to a plan. In addition to this, QLAP adds two other criteria:

1. The agent must be able to achieve the antecedent event of DBN r with sufficient
reliability. This is true if there is a sufficiently reliable plan to achieve the antecedent
event of DBN r. This saves resources because if the agent cannot reliably achieve the
antecedent event, then the plan cannot reliably be executed.

2. It must not create a cycle in the action graph. The action graph is constructed by
creating a vertex for each qualitative value. Then for each DBN that has been made
into a plan, a directed edge is added to the vertex that matches the antecedent event

52

coming from the vertex that matches the consequent event. If there is a cycle when
the edge for the proposed DBN is added, then it is not made into a plan. This helps
to simplify paths within actions and plans.

6.2.3 Limiting when Change DBNs are Added

As discussed in Section 6.2.1, a new DBN cannot be learned if the action to bring about the
consequent event is sufficiently reliable. Additionally, the learning of DBNs also follows
a developmental progression starting with the motor variables as antecedent events. This
progression occurs because A DBN r′ can only be learned if there exists a sufficiently
deterministic DBN r that predicts the antecedent event of r′. (If the antecedent event for r′

is a magnitude variable v, then there must exist a sufficiently deterministic DBN that can
increase or decrease v.) Finally, if the DBN does not become sufficiently deterministic or a
plan after 100,000 timesteps, it is deleted.

6.3 Targeted Learning

Since QLAP creates an action for each variable and qualitative value combination, a QLAP
agent is faced with many potential actions that could be learned. QLAP can choose different
actions to practice based on the learning gradient, but what about the thresholds to learn
predictive DBN models and plans? Some actions might be more difficult to learn than
others, so it seems reasonable that the requirements for learning representations that lead to
learning such actions should be loosened.

QLAP does targeted learning for difficult actions. To learn a plan for an action
chosen for targeted learning, QLAP

1. Lowers the threshold needed to learn a contingency. Recall from Chapter 4, Sec-
tion 1.2, that a contingency is learned when

Pr(soon(t,E2)|E1(t))−Pr(soon(t,E2)) > θpen = 0.05 (6.4)

If event E2 is chosen for targeted learning, QLAP makes it more likely that a contin-
gency will by learned by setting θpen = 0.02.

2. Lowers the threshold needed to learn a plan. Recall from Chapter 5, Section 2 that
one of the requirements to convert a change DBN r into a plan is that

brel(r) > θSR = 0.75 (6.5)

If event E2 is chosen for targeted learning, QLAP makes it more likely that a DBN
will be converted to a plan by setting θSR = 0.25.

This leaves the question of when to use targeted learning of actions. An event is
chosen as a goal for targeted learning if the probability of being in a state where the event

53

is satisfied is less than 0.05; we call such an event sufficiently rare. This is reminiscent of
Bonarini et al. [2006]. They consider desirable states to be those that are rarely reached or
are easily left once reached.

6.4 Self

One step towards tool use is making objects in the environment part of “self” so that they
can be used to perform useful tasks. The representation of “self” is straightforward in
QLAP. A change variable is part of “self” if it can be quickly and reliably manipulated.
QLAP learns what is part of “self” by looking for variables that it can reliably control with
low latency.

Marjanovic [1996] enabled a robot to identify what was part of “self” by having the
robot wave its arm and having the robot assume that the only thing moving in the scene was
itself. The work of Metta and Fitzpatrick [2003] is similar but more sophisticated because it
looks for optical flow that correlates with motor commands of the arm. Gold and Scassellati
[2006] note the time between giving a motor command and seeing movement to denote self.
Our method for learning self is similar to that of Gold and Scassellati, but we learn what is
part of self while learning actions.

A direction of change variable v̇ is part of self if:

1. the average time it takes for the action to set v̇ = [+] and v̇ = [−] is less than k, and
2. the actions for both v̇ = [+] and v̇ = [−] are sufficiently reliable.

6.5 Conclusion

QLAP is not given a goal, but instead explores the environment autonomously. It uses
Intelligent Adaptive Curiosity (IAC) to determine what aspects of the environment should
be explored. In Chapter 7, we will see a comparison between using IAC action selection
and choosing actions to practice randomly.

QLAP also uses various methods to prune the number of representations learned. In
Chapter 7, we will see that these methods free up resources without significantly hindering
learning. Additionally, QLAP performs targeted learning to bring about rare events. We
will also see in Chapter 7 that this helps QLAP to perform the difficult task of picking up
the block.

54

Chapter 7

Evaluation

The central claim is that QLAP enables an agent in a continuous environment to autonomously
learn useful abstract state representations and effective higher-level actions. QLAP learns
autonomously as part of its developmental progression. Evaluating autonomous learning is
difficult because there is no pre-set task on which to evaluate performance. The approach
taken in this thesis to evaluate QLAP is to have the agent learn autonomously in an envi-
ronment, and then to see if the agent is able to perform a set of tasks. It is important to note
that during learning the agent does not know on which tasks it will be evaluated.

The evaluations are performed in a simulated environment that uses real physics. In
this environment, the robot is sitting at a table that contains one or two blocks. The robot
explores autonomously with one arm, and through exploration it learns to perform a set of
QLAP actions. Some of the learned actions we evaluate QLAP on include hitting a block in
a specified direction, hitting a block off the table, picking up a block with a magnetic hand,
and using one block to hit another block.

We evaluate the quality of the learned landmarks by using the landmarks to dis-
cretize the environment for reinforcement learning. We also perform various ablation stud-
ies to test QLAP under different conditions. Additionally, QLAP is evaluated in an envi-
ronment based on the video game Pong. The agent autonomously learns the dynamics of
the game, and then it is evaluated on how well it can play.

The results indicate that QLAP learning autonomously was able to do as well or
better than a supervised learner on various tasks. Additionally, the agent was able to learn
to use one block to hit another block if they are aligned. Also, the landmarks that QLAP
learns are broadly useful because the agent was able to do reinforcement learning better
using the QLAP landmarks than with random landmarks.

55

7.1 Core Evaluation Environment

QLAP is evaluated in multiple environments. This section presents the core environment,
which is used for many of the experiments. Other environments are used, as well as modi-
fications to the core environment. Those will be discussed where they are relevant.

(a) Not grasping (b) Grasping (c) Above view

Figure 7.1: The Core Environment (shown here with floating objects)

The core environment is implemented in Breve [Klein, 2003] and has realistic
physics. Breve simulates physics using the Open Dynamics Engine (ODE) [Smith, 2004].
The simulation consists of a robot at a table with one or more blocks and floating objects.
The robot has an orthogonal arm that can move in the x, y, and z directions. The core
environment is shown in Figure 7.1, and the variables perceived by the agent for the core
environment are shown in Table 7.1. The block has a width that varies between 1 and 3
units. The block is replaced when it is out of reach and not moving, or when it hits the
floor.1

The robot can grasp the object in a way that is reminiscent of both the palmer reflex
[Payne and Isaacs, 2007] and having a sticky mitten [Needham et al., 2002]. The palmer
reflex is a reflex that is present from birth until the age 4-6 months in human babies. The
reflex causes the baby to close its hand when something touches the palm [Payne and Isaacs,
2007]. In the sticky mittens experiments [Needham et al., 2002], three-month-old infants
wore mittens covered with Velcro that allowed them to more easily grasp objects.

Grasping is implemented on the robot to allow it to grasp only when over the block.
When the hand is placed directly on top of the block, the block is grasped. Specifically,
the block is grasped if the hand and block are colliding, and the Euclidean 2D distance in
the x and y directions is less than half the width of the palm, 3/2 = 1.5 units. For every

1The physics simulator sometimes exhibits odd behavior. So the block is also reset if it out of reach for 100
timesteps (it occasionally flies off when hit just right) or if the robot torso moves. If the block flies up above
the robot then the learning or evaluation is began again at the last saved checkpoint.

56

timestep that the block is grasped, it is let go with probability 0.1. And to keep the robot
from repeatedly picking it up and dropping it in the same place, when the block is let go,
the block is moved with probability 0.5.

7.2 Experimental Setup

During the experiments, the agent first explores autonomously for 250,000 timesteps (about
3.5 hours of physical experience) as described in Chapter 6. During this exploration, the
state of the agent is saved every 10,000 timesteps (about every 8 minutes of physical ex-
perience). The agent is then evaluated on how well it can do the learned task using the
representations from each stored state. The next two sections explain the task setup and the
specific goals to be achieved by performing the task.

7.2.1 Task Setup

For each task, the agent will have to achieve a goal. A goal is a qualitative value of some
variable. At the beginning of each trial, a block is placed in a random location within reach
of the agent and the hand is moved to a random location. Then, the goal is given to the
agent. The agent makes and executes plans to achieve the goal. If the agent cannot make a
plan to achieve the goal, it moves randomly. The trial is terminated after 300 timesteps or
if the goal is achieved. The agent receives a penalty of −0.01 for each timestep it does not
achieve the goal and a reward of 9.99 on the timestep it achieves the goal. Each evaluation
consists of 100 trials. The rewards over the 100 trials are averaged, and the average reward
is taken as a measure of ability.

7.2.2 Goals of the Core Environment

There are three goals in the core environment on which the agent’s performance is evalu-
ated. These are referred to as the core tasks.

move the block The evaluator picks a goal to move the block left (ṪL = [+]), right (ṪR =
[−]), or forward (ṪT = [+]). The goal is chosen randomly based on the relative
position of the hand and the block.2 A trial is terminated early if the agent hits the
block in the wrong direction.

hit the block to the floor The goal is to make bang = true.

2If the block is very close to the robot, then the goal is to hit the block to the left if the block is on the left
side of the arm, and right otherwise. Otherwise, if the block is on the extreme left, then the goal is chosen
randomly to hit the block left or forward (right is analogous). Otherwise, the goal is chosen randomly to hit the
block left, right, or forward.

57

pick up the block The goal is to get the hand in just the right place so the robot can grasp
the the block and make T = true. A trial is terminated early if the agent hits the block
out of reach.

7.3 Tests for Statistical Significance

The statistics for the evaluation are done using repeated measures analysis of variance
(ANOVA) [Harris, 1995]. This is the method for statistical hypothesis testing typically
used in longitudinal studies. The main test of ANOVA is the F test. The higher the value of
F , the more likely it is that there is a significant result. The statistics for this chapter were
calculated using the statistics package SPSS. Often, when many experiments of the same
type are performed, it is standard practice to modify the test for statistical significance to
make it less likely that statistically significant findings will result from simply having per-
formed many experiments. Since, in this thesis, each of the experiments seeks to address a
different question, no such adjustments were made to the significance values.

Often in the experiments in this chapter, a bar graph is displayed showing the aver-
age performance over time. The first 100,000 timesteps are excluded in these bar graphs,
because doing so better highlights the differences in performance. The statistics were also
calculated excluding the first 100,000 timesteps. In the line graphs, all error bars are stan-
dard error. Twenty agents were evaluated for each experimental condition (except for Pong).

7.4 Compare Undirected QLAP with Supervised Learning

Claim: QLAP, doing undirected exploration and creating high-level actions on low-level
foundations, performs as well or better than a supervised learning method with a perfor-
mance goal pre-specified.

We evaluate this claim by comparing the performance of QLAP to the performance
of reinforcement learning using tile coding on the core tasks. The tile coding learner was
trained only on the evaluation task. This puts QLAP at a disadvantage on the evaluation
task because QLAP learns more than the evaluation task.

Tile coding is a way to discretize continuous input for reinforcement learning. The
tile coder was trained using linear, gradient-descent Sarsa(λ) with binary features [Sutton
and Barto, 1998] where the binary features came from tile coding. See Appendix H for
implementation details. For each experiment, 20 QLAP agents and 20 tile-coding agents
were trained. The QLAP agents autonomously explored the environment, and the tile-
coding agents continually repeated the specified core task.

58

7.4.1 Experimental Environment

In addition to the core environment, QLAP is also evaluated with distractor objects. This
is done using the floating extension environment, which adds two floating objects that the
agent can observe but cannot interact with. The purpose of this environment is to see if
the robot can learn in the presence of distractor objects. The objects float around in an
invisible box. The variables added to the core environment to make the floating extension
environment are shown in the following table:

Variable Type Meaning
f 1
x , f 1

y , f 1
z magnitude location of first floating object in x, y, and z directions

ḟ 1
x , ḟ 1

y , ḟ 1
z change derivative of f 1

x , f 1
y , f 1

z
f 2
x , f 2

y , f 2
z magnitude location of second floating object in x, y, and z directions

ḟ 2
x , ḟ 2

y , ḟ 2
z change derivative of f 2

x , f 2
y , f 2

z

7.4.2 Experimental Conditions

Both the QLAP and the tile coding agents are evaluated on the core tasks in both the core
environment and the floating extension environment. There are three experimental condi-
tions.

QLAP The QLAP algorithm.

Tile-1 Tile coding choosing an action every time step.

Tile-10 Tile coding choosing an action every 10 time steps.

Tile-1 and Tile-10 are both used because Tile-1 had difficulty learning the core tasks
due to high task diameter. Tile-10 gets a penalty of −0.1 every 10th timestep it does not
reach the goal and a reward of 9.99 on the timestep it reaches the goal. QLAP learned
autonomously for 250,000 timesteps as described in Section 7.2. The tile coding agents
repeatedly performed trials of a particular core task for 250,000 timesteps. At the beginning
of each trial, the core task that the tile coding agent would practice was chosen randomly.

7.4.3 Results

The results are shown in Figures 7.2, 7.3, and 7.4. As can be seen in Figures 7.2(a), 7.3(a),
and 7.4(a), Tile-1 was not able to do any of the tasks well compared to QLAP due to the
high task diameter (the number of timesteps needed to complete the task).

Having the tile learner choose an action every 10 time steps improved its perfor-
mance, as can be seen in Figures 7.2(c), 7.3(c), and 7.4(c). On the easiest task of hitting the
block, Tile-10 does better. They do almost equally well on the tasks of making the block
hit the floor and picking up the block.

59

As can be seen by visually inspecting Figures 7.2(e), 7.3(e), and 7.4(e), the perfor-
mance of tile coding degrades much more than the performance of QLAP degrades when
the distractor objects are added.

The sub-figures (b), (d), and (f) of Figures 7.2, 7.3, and 7.4 show the average value
of the performance after the first 100,000 timesteps.

60

Table 7.1: Variables of the Core Environment

Variable Type Meaning

ux motor force in x direction
uy motor force in y direction
uz motor force in the z direction
uUG motor ungrasp the block
hx magnitude global location of hand in x direction
ḣx change derivative of hx
hy magnitude global location of hand in y direction
ḣy change derivative of hy
hz magnitude global location of hand in z direction
ḣz change derivative of hz
yT B magnitude top of hand in frame of reference of bottom of block (y direction)
ẏT B change derivative of yT B
yBT magnitude bottom of hand in frame of reference of top of block (y direction)
ẏBT change derivative of yBT
xRL magnitude right side of hand in frame of reference of left side of block (x direction)
ẋRL change derivative of xRL
xLR magnitude left side of hand in frame of reference of right side of block (x direction)
ẋLR change derivative of xLR
zBT magnitude bottom side of hand in frame of reference of top of block (z direction)
żBT change derivative of zBT
zF magnitude distance to the floor
żF change derivative of zF
TL magnitude location of nearest edge of block in x direction in coordinate frame defined by left edge of

table
ṪL change derivative of TL
TR magnitude location of nearest edge of block in x direction in coordinate frame defined by right edge

of table
ṪR change derivative of TR
TT magnitude location of nearest edge of block in y direction in coordinate frame defined by top edge of

table
ṪT change derivative of TT
cx magnitude location of hand in x direction relative to center of block
ċx change derivative of cx
cy magnitude location of hand in y direction relative to center of block
ċy change derivative of cy
T nominal block is grasped, true or false. Becomes true when the hand is touching the block and the

2D distance between the center of the hand and the center of the block is less than 1.5.
bang nominal true when block hits the floor

61

0 5 10 15 20 25
Timesteps (x 10,000)

-3

-2

-1

0

1

2

3

4

5

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

m
o
v
e
 t

a
sk

)

QLAP
Tile-1

(a) QLAP and Tile-1

QLAP Tile-1
0

1

2

3

4

5

6

7

8

A
v
e
ra

g
e
 r

e
w

a
rd

:
m

o
v
e
 t

a
sk

 (
+

 3
.0

)

(b) QLAP and Tile-1

0 5 10 15 20 25
Timesteps (x 10,000)

-3

-2

-1

0

1

2

3

4

5

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

m
o
v
e
 t

a
sk

)

QLAP
Tile-10

(c) QLAP and Tile-10

QLAP Tile-10
0

1

2

3

4

5

6

7

8

A
v
e
ra

g
e
 r

e
w

a
rd

:
m

o
v
e
 t

a
sk

 (
+

 3
.0

)

(d) QLAP and Tile-10

0 5 10 15 20 25
Timesteps (x 10,000)

-3

-2

-1

0

1

2

3

4

5

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

m
o
v
e
 t

a
sk

)

QLAP
Tile-10

(e) Float: QLAP and Tile-10

QLAP Tile-10
0

1

2

3

4

5

6

7

8

A
v
e
ra

g
e
 r

e
w

a
rd

:
m

o
v
e
 t

a
sk

 (
+

 3
.0

)

(f) Float: QLAP and Tile-10

Figure 7.2: Moving the block. (a) QLAP does better than Tile-1 because of the high task
diameter. (c) Tile-10 does better than QLAP. (e) When the floating objects are added, the
performance of Tile-10 degrades much more than the performance of QLAP degrades. (b)
F = 70.010, sig. = 0.000. (d) F = 71.879, sig. = 0.000. (f) F = 0.917, sig. = 0.344. (Bar
graphs show average value after 100,000 timesteps.)

62

0 5 10 15 20 25
Timesteps (x 10,000)

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

h
it

 t
o
 f

lo
o
r)

QLAP
Tile-1

(a) QLAP and Tile-1

QLAP Tile-1
0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
v
e
ra

g
e
 r

e
w

a
rd

:
h
it

 t
o
 f

lo
o
r

(+
 3

.0
)

(b) QLAP and Tile-1

0 5 10 15 20 25
Timesteps (x 10,000)

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

h
it

 t
o
 f

lo
o
r)

QLAP
Tile-10

(c) QLAP and Tile-10

QLAP Tile-10
0.0

0.2

0.4

0.6

0.8

1.0

1.2
A

v
e
ra

g
e
 r

e
w

a
rd

:
h
it

 t
o
 f

lo
o
r

(+
 3

.0
)

(d) QLAP and Tile-10

0 5 10 15 20 25
Timesteps (x 10,000)

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

h
it

 t
o
 f

lo
o
r)

QLAP
Tile-10

(e) Float: QLAP and Tile-10

QLAP Tile-10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
v
e
ra

g
e
 r

e
w

a
rd

:
h
it

 t
o
 f

lo
o
r

(+
 3

.0
)

(f) Float: QLAP and Tile-10

Figure 7.3: Hit the block to the floor. (a) Tile-1 is not able to hit the block to the floor. (c)
Tile-10 does the task well. (e) When the floating objects are added, the performance of Tile-
10 degrades more than the performance of QLAP degrades. (b) F = 49.703, sig. = 0.000.
(d) F = 1.561, sig. = 0.219. (f) F = 20.802, sig. = 0.000.

63

0 5 10 15 20 25
Timesteps (x 10,000)

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

p
ic

ku
p
 t

a
sk

)
QLAP
Tile-1

(a) QLAP and Tile-1

QLAP Tile-1
0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
v
e
ra

g
e
 r

e
w

a
rd

:
p
ic

ku
p
 t

a
sk

 (
+

 3
.0

)

(b) QLAP and Tile-1

0 5 10 15 20 25
Timesteps (x 10,000)

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

p
ic

ku
p
 t

a
sk

)

QLAP
Tile-10

(c) QLAP and Tile-10

QLAP Tile-10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
v
e
ra

g
e
 r

e
w

a
rd

:
p
ic

ku
p
 t

a
sk

 (
+

 3
.0

)

(d) QLAP and Tile-10

0 5 10 15 20 25
Timesteps (x 10,000)

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

p
ic

ku
p
 t

a
sk

)

QLAP
Tile-10

(e) Float: QLAP and Tile-10

QLAP Tile-10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
v
e
ra

g
e
 r

e
w

a
rd

:
p
ic

ku
p
 t

a
sk

 (
+

 3
.0

)

(f) Float: QLAP and Tile-10

Figure 7.4: Picking up the block. (a) Tile-1 is not able to pick up the block. (c) Tile-10
does the task well. (e) When the floating objects are added, the performance of Tile-10
degrades more than the performance of QLAP degrades. (b) F = 19.496, sig. = 0.000. (d)
F = 3.181, sig. = 0.082. (f) F = 9.505, sig. = 0.004.

64

7.5 QLAP enables transfer learning

Claim: QLAP can do transfer learning by learning actions that can later be treated as
primitive actions to build yet higher-level actions. To evaluate this claim, the agent trains
with some variables missing that are needed to make the block hit the floor in the core envi-
ronment. Then, once these variables are added, the agent can use what it learned previously
to learn faster than starting from scratch.

7.5.1 Experimental Environment

The experiment is performed in the core environment on the task of hitting the block to the
floor.

7.5.2 Experimental Conditions

There are two experimental conditions. For each experimental condition, 20 agents were
trained (20 agents were trained for each experimental condition in this chapter unless stated
otherwise).

1. transfer The agent learns for 150,000 timesteps without the variables relevant to the
task (bang and z f in Table 7.1). It then learns for another 150,000 timesteps using all
of the variables.

2. from scratch The agent explores for 150,000 timesteps and has access to all of the
variables.

We call the conditions transfer and from scratch because the transfer agent should use
what it learned during the first 150,000 timesteps to more quickly learn to perform the eval-
uation task compared with the from scratch agent that must begin learning from scratch.

7.5.3 Results

The results are shown in Figure 7.5. We see in Figure 7.5 that the transfer agent can reuse
the skills learned during exploration with the limited set of variables to learn to perform the
task faster. For this experiment, the statistics and bar graph, Figure 7.5(b), were computed
over 150,000 timesteps.

65

0 2 4 6 8 10 12 14 16
Timesteps (x 10,000)

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

h
it

 t
o
 f

lo
o
r)

transfer
from scratch

(a) Average reward over time

transfer from scratch
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
v
e
ra

g
e
 r

e
w

a
rd

:
h
it

 t
o
 f

lo
o
r

(+
 3

.0
)

(b) Summed average reward (+3.0)

Figure 7.5: The transfer agent can use the previously acquired knowledge to perform the
task better. (b) F = 6.739, sig. = 0.013 over all 150,000 timesteps.

66

7.6 QLAP can ignore extraneous variables

Claim: Because of its bottom-up construction of DBNs and plans, QLAP can ignore extra-
neous variables. We saw in Section 7.4 that the performance of QLAP degrades very little
in the presence of distractor objects. In this experiment, we explore that more deeply. The
experiments in this section add extra distractor variables and demonstrate that the perfor-
mance degrades gracefully on the core tasks.

7.6.1 Experimental Environment

There are two kinds of extraneous variables; there are irrelevant variables and relevant
variables. Irrelevant variables are variables that are not in any meaningful way related
to the dynamics of the environment. For example, random values. Relevant variables are
variables related to the dynamics of the environment and so are more likely to become part
of learned contingencies, DBNs, and plans.

Irrelevant Variables

There are three environments with irrelevant variables, each with an increasing number of
variables. The first is the floating extension environment discussed previously. The second
environment is called the random-1 extension environment. The random-1 environment
uses all of the variables of the floating extension environment, plus it adds the variables: r1,
ṙ1, r2, ṙ2, r3, and ṙ3. The values for the variables r1, r2, and r3 are chosen randomly from a
uniform distribution over the range [0,1). The third is the random-2 extension environment,
which uses all of the variables of the random-1 extension environment and adds r4, ṙ4, r5,
ṙ5, r6, and ṙ6. The values for the variables r4, r5, and r6 are also chosen randomly from a
uniform distribution over the range [0,1).

Relevant Variables

There are two environments with relevant variables; the second environment has more vari-
ables than the first. The relevant-1 extension environment extends the core environment by
adding the variables in the table below.

67

Variable Type Meaning
yT T magnitude top of hand in frame of reference of top of block

(y direction)
ẏT T change derivative of yT T

xLL magnitude left side of hand in frame of reference of left side
of block (x direction)

ẋLL change derivative of xLL

bTY magnitude the top of the block in global frame (y direction)
ḃTY change derivative of bTY

bLX magnitude the left side of the block in global frame (x direc-
tion)

ḃLX change derivative of bLX

hTY magnitude the top of the hand in global frame (y direction)
ḣTY change derivative of hTY

hLX magnitude the left side of the hand in global frame (x direc-
tion)

ḣLX change derivative of hLX

The relevant-2 extension environment extends the relative-1 extension environment
by adding the variables in the table below.

Variable Type Meaning
yBB magnitude bottom of hand in frame of reference of bottom of

block (y direction)
ẏBB change derivative of yBB

xRR magnitude right side of hand in frame of reference of right
side of block (x direction)

ẋRR change derivative of xRR

bBY magnitude the bottom of the block in global frame (y direc-
tion)

ḃBY change derivative of bBY

bRX magnitude the right side of the block in global frame (x di-
rection)

ḃRX change derivative of bRX

hBY magnitude the bottom of the hand in global frame (y direc-
tion)

ḣBY change derivative of hBY

hRX magnitude the right side of the hand in global frame (x direc-
tion)

ḣRX change derivative of hRX

68

7.6.2 Experimental Conditions

1. no extra The core environment

2. float The float extension environment

3. random 1 The random-1 extension environment

4. random 2 The random-2 extension environment

5. relevant 1 The relevant-1 extension environment

6. relevant 2 The relevant-2 extension environment

7.6.3 Results

The results on the core tasks are shown in Figures 7.6, 7.7, 7.8. We see that adding ir-
relevant variables reduces performance, but not by much. Table 7.2 shows the results of
the statistical tests comparing the average performance of each condition with the no extra
condition. We see that the performance degrades significantly but gracefully for the move
task under conditions random 2 and relevant 2

Figure 7.9 shows the number change DBNs learned for each condition. We see,
as one would expect, that the relevant variables increase the number of DBNs, but the
irrelevant variables do not.

0 5 10 15 20 25
Timesteps (x 10,000)

-3

-2

-1

0

1

2

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

m
o
v
e
 t

a
sk

)

no extra
float
random 1
random 2
relevant 1
relevant 2

(a) Average reward over time

no extra float random 1 random 2 relevant 1 relevant 2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
v
e
ra

g
e
 r

e
w

a
rd

:
m

o
v
e
 t

a
sk

 (
+

 3
.0

)

(b) Summed average reward (+3.0)

Figure 7.6: Performance seems to go down slightly as new variables are added.

69

0 5 10 15 20 25
Timesteps (x 10,000)

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6
A

v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

h
it

 t
o
 f

lo
o
r)

no extra
float
random 1
random 2
relevant 1
relevant 2

(a) Average reward over time

no extra float random 1 random 2 relevant 1 relevant 2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
v
e
ra

g
e
 r

e
w

a
rd

:
h
it

 t
o
 f

lo
o
r

(+
 3

.0
)

(b) Summed average reward (+3.0)

Figure 7.7: Performance seems to go down when irrelevant variables are added. (Differ-
ences were not statistically significant.)

Table 7.2: Tests for Statistical Significance (compared with no-extra)

move task hit to floor pickup task
float F = 0.303, sig. = 0.585 F = 0.038, sig. = 0.847 F = 1.107, sig. = 0.299
random 1 F = 2.447, sig. = 0.126 F = 0.465, sig. = 0.499 F = 0.576, sig. = 0.453
random 2 F = 7.648, sig. = 0.009 F = 0.713, sig. = 0.404 F = 1.741, sig. = 0.195
relevant 1 F = 1.595, sig. = 0.214 F = 0.337, sig. = 0.565 F = 0.371, sig. = 0.546
relevant 2 F = 5.597, sig. = 0.023 F = 0.453, sig. = 0.505 F = 0.706, sig. = 0.406

0 5 10 15 20 25
Timesteps (x 10,000)

-3

-2

-1

0

1

2

3

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

p
ic

ku
p
 t

a
sk

)

no extra
float
random 1
random 2
relevant 1
relevant 2

(a) Average reward over time

no extra float random 1 random 2 relevant 1 relevant 2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
v
e
ra

g
e
 r

e
w

a
rd

:
p
ic

ku
p
 t

a
sk

 (
+

 3
.0

)

(b) Summed average reward (+3.0)

Figure 7.8: Performance seems goes down with irrelevant variables, but appears to im-
prove with some relevant variables. Most likely because the agent has more opportunities
(different ways) to learn actions. (Differences were not statistically significant.)

70

0 5 10 15 20 25
Timesteps (x 10,000)

0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

D
B

N
s

no extra
float
random 1
random 2
relevant 1
relevant 2

Figure 7.9: Number of change DBNs over time. This graph shows that the number of
DBNs does not increase without bound. We see two drops in the number of DBNs. The first
drop corresponds to learning to move the hand and those actions becoming sufficiently reli-
able. The second drop corresponds to contingencies being deleted after 100,000 timesteps
because they did not become plans to perform actions.

71

7.7 QLAP learns landmarks that are generally useful

Claim: QLAP learns landmarks that are generally useful. The purpose of this experiment
is to show that the learned landmarks really do represent the “natural joints” in the envi-
ronment. To evaluate this claim, we will compare the results of tabular Q-learning using
landmarks learned with QLAP with the results of tabular Q-learning using randomly gener-
ated landmarks. If the landmarks do represent the joints in the environment, then the tabular
Q-learner using learned landmarks should do better than the one using random landmarks.

7.7.1 Experimental Environment

Tabular Q-learning does not generalize well. During exploratory experiments, the state
space of the core environment was so large that tabular Q-learning rarely visited the same
state more than once. We therefore evaluate this claim using a smaller environment and a
simple task. We use the 2D core environment where the hand only moves in two dimensions.
It removes the variables of the z direction from the core environment. It subtracts uz, uUG,
hz, ḣz, zBT , żBT , cx, ċx, cy, ċy, T , and bang.

7.7.2 Experimental Conditions

QLAP landmarks Tabular Q-learning using landmarks learned using QLAP after a run of
100,000 timesteps on the 2D core environment.

random landmarks Tabular Q-learning using randomly generated landmarks.

To generate the random landmarks, for each magnitude or motor variable v, a random num-
ber of landmarks between 0 and 5 is chosen. Each landmark is then placed in a randomly
chosen location within the minimum and maximum range observed for v during a typical
run of QLAP. Note that motor variables already have a landmark at 0, so each motor variable
had between 1 and 6 landmarks.

7.7.3 Results

The results are shown in Figure 7.10. Tabular Q-learning works much better using the
learned landmarks than using the random ones.

72

0 5 10 15 20 25
Timesteps (x 10,000)

-3

-2

-1

0

1

2

3

4

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

m
o
v
e
 t

a
sk

)

QLAP landmarks
random landmarks

(a) Average reward over time

QLAP landmarks random landmarks
0

1

2

3

4

5

A
v
e
ra

g
e
 r

e
w

a
rd

:
m

o
v
e
 t

a
sk

 (
+

 3
.0

)

(b) Summed average reward (+3.0)

Figure 7.10: QLAP landmarks enable the agent to learn the task better than do random
landmarks. (b) F = 39.210, sig. = 0.000.

73

7.8 QLAP: Limitations and Steps towards Tool Use

Currently, QLAP appears to have a limitation in the complexity of actions it can learn. To
demonstrate this limitation, we set up an experiment where QLAP uses one block to hit
another.

In this experiment there are two blocks. A primary block that the agent can interact
with directly, and a secondary block that the agent cannot reach. The goal is to hit the
secondary block with the primary block. This is a step towards tool use because QLAP can
use one object to affect another.

The experiments in this section demonstrate that QLAP can learn to do this if the
blocks are placed near each other, but it can not learn it if they are separate and QLAP first
has to move the primary block to be near the secondary one.

7.8.1 Experimental Environment

This experiment takes place in the secondary block environment. The secondary block en-
vironment removes zF , TL, TR, TT , and their derivatives and bang from the core environment
and it adds variables related to the distances between the blocks. It adds three variables xBB,
yBB, and zBB, which is the distance in the x, y, and z directions, respectively, between the
two blocks. It also adds a Boolean variable mBB that is true if the blocks are touching.

Variable Type Meaning
xBB, yBB, zBB magnitude distance in the x, y, and z directions between the

two blocks
ẋBB, ẏBB, żBB change derivative of above
mBB nominal true if the blocks are touching

7.8.2 Experimental Conditions

aligned The secondary block is lined up with the primary block.

unaligned The agent has to pick up the primary block and move it so that it is aligned with
the secondary block.

In the aligned case, the secondary block is put at the same y location as the primary
block and is placed at a random x location between the primary block and the edge of the
table. For the unaligned condition, the secondary block is placed randomly on the left or
right edge of the table at a random x location and a random y location.

7.8.3 Results

The results are shown in Figure 7.11. QLAP can learn to use the primary block to hit the
secondary block when they are aligned, but not when they are not aligned. In the unaligned

74

case, the agent was not able to learn any sufficiently reliable DBNs that led to plans. To
learn the DBN, QLAP needs the situation to be set up correctly. But QLAP did not learn to
align the blocks when they were unaligned. See Chapter 10 for a further discussion of this
phenomenon.

0 5 10 15 20 25
Timesteps (x 10,000)

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

h
it

 s
e
co

n
d
a
ry

)

aligned
unaligned

(a) Average reward over time

aligned unaligned

0.0

0.5

1.0

1.5

2.0

2.5

A
v
e
ra

g
e
 r

e
w

a
rd

:
h
it

 s
e
co

n
d
a
ry

 (
+

 3
.0

)

(b) Summed average reward (+3.0)

Figure 7.11: Two Blocks. QLAP can use one block to hit another when they are aligned,
but QLAP cannot learn to align then when they are not aligned.

75

7.9 QLAP can learn to do unintuitive tasks

Claim: QLAP can learn to perform a task that does not match a human’s notion of intuitive
physics. The purpose of this experiment is to show that QLAP is not limited to tasks that
involve interacting with an object through physical contact.

In this environment, when the hand moves up, one of the floating balls moves up.
We can call this ball the contingent ball. The goal of this task is for the agent to notice this
contingency and then to learn to use it to move the contingent ball up. It is worth noting
that this task was introduced after the development of the algorithm, so the QLAP algorithm
was not altered to be able to do the task.

7.9.1 Experimental Environment

This experiment uses the floating extension environment with the enhancement that the con-
tingent ball rises when the hand rises. This environment is split into two sub-environments.
In the continuous rising environment, the contingent ball moves up continuously with the
hand. It is worth noting that the force is not very much, if the contingent ball is going down,
it does not immediately start to go up. The other environment is the jump up environment.
When the hand reaches a certain point along the z axis, the contingent ball immediately
jumps up. In both environments the contingent ball moves slowly down otherwise when it
is not moved up by the hand.

In both environments, the goal is to get the contingent ball to move up (ḟ 1
z = [+]).

The contingent ball moves randomly in the x and y directions, but gradually falls in the z
direction unless the hand moves up. These balls float around in an invisible box. When
evaluating, we change how bouncy the ball is because we want to minimize it hitting the
bottom of the box and bouncing up without the agent having to do anything. During the
evaluation, if the agent does not have a plan, it sets the motor value to 0 instead of a random
value. This is because a random value for uz value might be too likely to affect the results.

7.9.2 Experimental Conditions

continuous rising The red ball moves up continuously with the hand.

jump up When the hand reaches a certain point (hz ∈ (13.75,14.25)), the contingent ball
immediately jumps up.

7.9.3 Results

The results are shown in Figure 7.12. In both cases the agent learns to do the task. This task
ended up being easy for the robot, so to see a learning curve, the step cost was increased to
0.1 per timestep from 0.01 per timestep. The reward is lower in the continuous rising case
because the contingent ball starts off falling down and often the force is not enough to get

76

it going up before it hits the bottom (Because it only gets a force of 50 units, this is often
not enough to overcome momentum.) The jump up condition is not affected by momentum
because the contingent ball jumps up.

0 5 10 15 20 25
Timesteps (x 10,000)

-6

-4

-2

0

2

4

6

8

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

m
o
v
e
 b

a
ll

u
p
)

float red
float red jump

Figure 7.12: QLAP learns to make the contingent ball move up.

77

7.10 QLAP is not specific to a particular environment

Claim: QLAP is not specific to a particular environment. This section will show that QLAP
can learn to hit a ball in the pong environment. Like with the Breve environments, QLAP
explores the environment autonomously. It is not told to learn how to play Pong. Its learning
is unsupervised.

7.10.1 Experimental Environment

Figure 7.13: The pong environment.

The pong environment [Stober and Kuipers, 2008] is shown in Figure 7.13. The
pong environment consists of a left paddle l, a right paddle r, and a ball b. The left paddle
and the right paddle move in synchrony. The paddles only move in the y direction making
lx and rx constants. The discrete motor variable moves the paddles down, steady, or up. The
variable cl

x gives the location of the left paddle in the x direction in the frame of reference
of the ball. The variables cl

y, cr
x, and cr

y are analogous. The variables are shown in Table 7.3.
Two changes needed to be made to QLAP for the pong environment. Because there

is no latency between commands to move the paddles and the paddle moving (this environ-
ment is not built on a simulated physics engine), the window parameter k was not learned
dynamically, but rather set to k = 6 so that soon is a window of 0 to 5 timesteps. (This value
of k was not tuned for pong, it is the value for k that was used in the Breve environment
before the functionality was added to QLAP to set k dynamically.) Additionally, the pong
environment differs in an interesting way from the Breve environment. In this environment,
the most interesting object is the ball (although QLAP does not know this), but it cannot be
controlled directly. As a consequence, to run in this environment, QLAP was modified so
that a plan can be added to QLAP without having to have a reliable plan for the antecedent
event (see Chapter 6). No other modifications to QLAP were made.

QLAP learns autonomously in the pong environment, just as it does in the Breve-
based environments. During learning, every time the ball goes off the screen it starts in the
middle and the paddles start in the middle. During the evaluation, the QLAP agent is told
to make the ball go left if it is currently going right, and vice versa. The evaluation metric is
how long the agent can keep a volley going. As usual, during learning, QLAP did not know

78

Table 7.3: Variables of the Pong Environment

Variable Type Meaning

u motor −1 down, 0 steady, 1 up
lx magnitude left paddle location in x
l̇x change derivative of lx
ly magnitude left paddle location in y
l̇y change derivative of ly
rx magnitude right paddle location in x
ṙx change derivative of rx
ry magnitude right paddle location in y
ṙy change derivative of ry
bx magnitude ball location in x
ḃx change derivative of bx
by magnitude ball location in y
ḃy change derivative of by
cl

x magnitude location of left paddle in x direction relative to center of ball
ċl

x change derivative of cl
x

cl
y magnitude location of left paddle in y direction relative to center of ball

ċl
y change derivative of cl

y
cr

x magnitude location of right paddle in x direction relative to center of ball
ċr

x change derivative of cr
x

cr
y magnitude location of right paddle in y direction relative to center of ball

ċr
y change derivative of cr

y

that it eventually would be told to make the ball change direction. During the evaluation, if
the paddles were to start in the middle each time the ball went off the table, doing nothing
would allow the agent to hit the ball at least once. So to make the learning curve more
evident and to correspond with how evaluations are done in other environments where the
hand is moved to a random location before each trial, the paddles are moved to a random
location each time a new volley begins during the evaluation.

7.10.2 Results

The results are shown in Figure 7.14. The y-axis is the average number of volleys for the
four agents. The results show that the QLAP agent is able to learn to play Pong somewhat
well by autonomously learning the dynamics of the environment.

79

0 2 4 6 8 10 12 14
Timesteps (x 10,000)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

h
it

s
p
e
r

e
p
is

o
d
e

QLAP

Figure 7.14: QLAP learns to play Pong.

80

7.11 Ablation Studies

This section discusses the results of exploring various questions using ablation studies. To
perform the ablation studies, different parts of the algorithm are altered, and then QLAP is
evaluated on the core tasks.

7.11.1 Experimental Conditions

QLAP normal QLAP run

no IAC Does not use IAC as described in Chapter 6. Instead, it chooses actions to practice
randomly.

no Dyna Does not use Dyna as described in Chapter 5.

no Sarsa Does not use Sarsa as described in Chapter 5.

entropy Uses only entropy for hill climbing instead of the combination of entropy and best
reliability as discussed in Chapter 4.

no targeted Does not do targeted learning, which lowers the thresholds needed to learn
contingencies and plans for rare events as described in Chapter 6.

all targeted Does targeted learning for all actions.

NRC No restriction on contingencies for DBNs that the antecedent must be predicted by a
sufficiently reliable DBN as described in Chapter 6.

NRP No restrictions on converting DBNs to plans that the antecedent event of the DBN
must be able to be achieved by some sufficiently reliable plan as described in Chap-
ter 6.

7.11.2 Results

The results are shown in Figures 7.15, 7.16, 7.17, and in Figures 7.18, 7.19, 7.20, and
in Table 7.4. Additionally, Figures 7.21, 7.22, and 7.23 show the cumulative number of
exploratory (practice) calls to different sets of actions for various conditions that occurred
during autonomous exploration. And Figures 7.24 and 7.25 show the number of change
DBNs learned under different conditions.

1. How does the exploration method affect QLAP? This question was tested using the
condition no IAC where exploration actions were chosen randomly. The condition
no IAC did not do as well on the task of picking up the block (although it was not
statistically significant). Interestingly, Figure 7.21 shows that the condition no IAC

81

makes the most calls to moving the hand. Since moving the hand is easy, the agent ap-
pears to be wasting exploration. This wasted exploration may be related to the result
that no IAC uses more resources by learning more DBNs as shown in Figures 7.24
and 7.25.

2. How is QLAP affected by developmental restrictions? This question was tested using
the condition NRC that limits when contingencies can be learned and the condition
NRP that limits when plans can be learned. The results showed that adding these
restrictions did not hinder performance. And figures 7.24 and 7.25 show that NRC
uses more resources in the form of DBNs. The overall result is that restricting con-
tingencies and plans does not hurt performance and can save resources (at least with
respect to limiting contingencies).

3. How does QLAP do with different aspects ablated? This question was tested using
the condition no Dyna that removed the updating of plans using new statistics and
the condition no Sarsa that removed the updating of plans using experience. When
either of these were removed, the agent seemed to lose some ability to pick up the
block, but the results were not statistically significant. The most important method
for learning a policy in QLAP is dynamic programming. These results suggest that
in these environments that Sarsa and Dyna may not be needed.

4. Does the agent need to hillclimb on best reliability? This question was tested using
the condition entropy that only did hillclimbing on reduction in entropy. Without
using hillclimbing on best reliability, the agent was significantly diminished in its
ability to pick up the block.

5. Does the agent need targeted learning? This question was tested using the condition
no targeted that did not do targeted learning and the condition all targeted that did
targeted learning of all actions. The results show that targeted learning is important
for learning to pick up the block (statistically significant) but does hurt slightly for
moving the block (not statistically significant). We see in Figures 7.22 and 7.23 that
no targeted makes fewer exploratory calls to the actions to move the block or pick up
the block. And Figures 7.24 and 7.25 show that targeted learning affects the number
of DBNs learned. We see that doing all targeted uses more resources in the form of
DBNs, but does not significantly improve performance.

82

0 5 10 15 20 25
Timesteps (x 10,000)

-3

-2

-1

0

1

2

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

m
o
v
e
 t

a
sk

)

QLAP
no IAC
no Dyna
no Sarsa
entropy

(a) Average reward over time

QLAP no IAC no Dyna no Sarsa entropy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
v
e
ra

g
e
 r

e
w

a
rd

:
m

o
v
e
 t

a
sk

 (
+

 3
.0

)

(b) Summed average reward (+3.0)

Figure 7.15: Moving the block. All conditions appear to do equally well on this easy task.

Table 7.4: Tests for Statistical Significance (compared with QLAP)

move task hit to floor pickup task
no IAC F = 0.251, sig. = 0.619 F = 0.232, sig. = 0.633 F = 1.052, sig. = 0.148
no Dyna F = 2.355, sig. = 0.133 F = 1.131, sig. = 0.294 F = 0.447, sig. = 0.508
no Sarsa F = 0.398, sig. = 0.532 F = 0.022, sig. = 0.870 F = 0.248, sig. = 0.662
entropy F = 0.009, sig. = 0.927 F = 2.812, sig. = 0.102 F = 19.547, sig. = 0.000
no targeted F = 2.185, sig. = 0.148 F = 0.427, sig. = 0.517 F = 8.432, sig. = 0.006
all targeted F = 2.183, sig. = 0.148 F = 0.055, sig. = 0.816 F = 1.414, sig. = 0.242
NRC F = 0.774, sig. = 0.384 F = 2.178, sig. = 0.148 F = 0.004, sig. = 0.948
NRP F = 1.491, sig. = 0.230 F = 0.441, sig. = 0.511 F = 0.162, sig. = 0.690

83

0 5 10 15 20 25
Timesteps (x 10,000)

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

h
it

 t
o
 f

lo
o
r)

QLAP
no IAC
no Dyna
no Sarsa
entropy

(a) Average reward over time

QLAP no IAC no Dyna no Sarsa entropy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
v
e
ra

g
e
 r

e
w

a
rd

:
h
it

 t
o
 f

lo
o
r

(+
 3

.0
)

(b) Summed average reward (+3.0)

Figure 7.16: Hit the block to the floor. In this experiment, both Dyna and using best relia-
bility appear to be important (although neither effect was statistically significant).

0 5 10 15 20 25
Timesteps (x 10,000)

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

p
ic

ku
p
 t

a
sk

)

QLAP
no IAC
no Dyna
no Sarsa
entropy

(a) Average reward over time

QLAP no IAC no Dyna no Sarsa entropy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
v
e
ra

g
e
 r

e
w

a
rd

:
p
ic

ku
p
 t

a
sk

 (
+

 3
.0

)

(b) Summed average reward (+3.0)

Figure 7.17: Pick up the block. On this task, we see that using only entropy for hillclimbing
hurts performance.

84

0 5 10 15 20 25
Timesteps (x 10,000)

-3

-2

-1

0

1

2

3

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

m
o
v
e
 t

a
sk

)

QLAP
no targeted
all targeted
NRC
NRP

(a) Average reward over time

QLAP no targeted all targeted NRC NRP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
v
e
ra

g
e
 r

e
w

a
rd

:
m

o
v
e
 t

a
sk

 (
+

 3
.0

)
(b) Summed average reward (+3.0)

Figure 7.18: Moving the block. All conditions appear to do equally well.

0 5 10 15 20 25
Timesteps (x 10,000)

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

h
it

 t
o
 f

lo
o
r)

QLAP
no targeted
all targeted
NRC
NRP

(a) Average reward over time

QLAP no targeted all targeted NRC NRP

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 r

e
w

a
rd

:
h
it

 t
o
 f

lo
o
r

(+
 3

.0
)

(b) Summed average reward (+3.0)

Figure 7.19: Hit the block to the floor. All conditions appear to do equally well.

85

0 5 10 15 20 25
Timesteps (x 10,000)

-3

-2

-1

0

1

2

3

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

e
p
is

o
d
e
 (

p
ic

ku
p
 t

a
sk

)

QLAP
no targeted
all targeted
NRC
NRP

(a) Average reward over time

QLAP no targeted all targeted NRC NRP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
v
e
ra

g
e
 r

e
w

a
rd

:
p
ic

ku
p
 t

a
sk

 (
+

 3
.0

)
(b) Summed average reward (+3.0)

Figure 7.20: Pick up the block. Targeted learning is particularly important on this task.

0 5 10 15 20 25
Timesteps (x 10,000)

0

50

100

150

200

250

300

350

400

450

C
u
m

u
la

ti
v
e
 c

a
lls

 t
o
 (

m
o
v
e
 h

a
n
d
)

QLAP
no IAC
no targeted
all targeted

Figure 7.21: Move the hand. Cumulative number of exploratory calls to actions to each of
the variables ḣx, ḣy, and ḣz to positive and negative.

86

0 5 10 15 20 25
Timesteps (x 10,000)

0

50

100

150

200

250

300

350

C
u
m

u
la

ti
v
e
 c

a
lls

 t
o
 (

m
o
v
e
 b

lo
ck

)

QLAP
no IAC
no targeted
all targeted

Figure 7.22: Move the block. Cumulative number of exploratory calls to actions to each of
the variables ṪL, ṪR, and ṪT to positive and negative.

0 5 10 15 20 25
Timesteps (x 10,000)

0

5

10

15

20

25

30

35

C
u
m

u
la

ti
v
e
 c

a
lls

 t
o
 (

p
ic

ku
p
)

QLAP
no IAC
no targeted
all targeted

Figure 7.23: Pick up the block. Cumulative number of exploratory calls to the action
a(T, true).

87

0 5 10 15 20 25
Timesteps (x 10,000)

0

100

200

300

400

500

N
u
m

b
e
r

o
f

D
B

N
s

QLAP
no targeted
all targeted
NRC
no IAC

Figure 7.24: Number of change DBNs over time. (Error bars are standard error.)

0 5 10 15 20 25
Timesteps (x 10,000)

0

100

200

300

400

500

N
u
m

b
e
r

o
f

D
B

N
s

QLAP
no targeted
all targeted
NRC
no IAC

Figure 7.25: Number of change DBNs over time. In this graph, the error bars have been
removed to more clearly show the trends.

88

Chapter 8

Discussion

This chapter discusses different aspects of the QLAP algorithm. First it provides examples
of what is learned during a typical run of QLAP on the core environment. Then, it discusses
the types of noise experienced by the QLAP agent in the core environment. Following this,
there is a discussion of theoretical bounds and thresholds. Finally, there is a discussion
about the learned action hierarchy in QLAP.

8.1 Examples of What QLAP Learns

This section shows the landmarks, and some of the DBNs, plans, and actions of a typical
QLAP run in the core environment.

8.1.1 Landmarks Learned

Table 8.1 shows the landmarks that were learned. For motor variables ux and uy, it takes
a force of at least 300 units to move the hand, and QLAP has learned these landmarks.
QLAP has also learned the force necessary to move the hand up in the z direction for motor
variable uz. QLAP has learned the limits of movement for the hand on hx, hy, and hz. For
the variables yT B, xRL, xLR, and zBT , which give the distances between the edges of the hand
and the edges of the block, QLAP has learned that zero is an important landmark because
when those variables have a value of zero, the block moves.

For the distance from the floor, zF , QLAP has learned a landmark at zero. Addition-
ally, for TL and TT , the distance between the block and the left and top edges of the table
respectively, QLAP learned that zero is an important landmark. As for Tr, the block rarely
goes off the table to the right because the robot is using its left hand that is on the left side
of the table.1 And for the variables cx and cy, QLAP learns landmarks that help it center the
agent’s hand over the block.

1Note that left, right, and top are from the point of view of the robot.

89

8.1.2 DBNs, Plans, and Actions Learned

Different agents learn different representations. Some agents do not learn some actions
very well. Some agents learn better plans for different actions, especially the more difficult
actions such as picking up the block or knocking it off the table. We see in Table 8.2 that
the action to move the hand to the left (which is the positive x direction) has one plan that
has high reliability. In Table 8.3, we see that the action to move the hand left relative to the
block has three plans. The first two plans indicate in their CPT tables for the DBNs (not
shown in Table 8.3) that they are reliable if the hand is not on the block. The first DBN is
most reliable if the hand is not higher than the block, and the second DBN is most reliable
if the block is not grasped. This makes sense, since if the block is grasped then when the
hand moves the block will move, and xLR will be unchanged.

90

Table 8.1: Learned Landmarks for Core Environment

Variable Initial Landmarks Final Landmarks

ux {[−0.05,0.05]} {[−335.03,−333.53], [−0.05,0.05], [288.89,331.27]}
uy {[−0.05,0.05]} {[−310.26,−301.04], [−0.05,0.05], [300.00,306.60]}
uz {[−0.05,0.05]} {[−0.05,0.05], [570.59,575.89]}
uUG Boolean Boolean
hx {} {[−2.54,−2.47], [−1.52,−1.32], [0.62,0.93], [2.50,2.55]}
ḣx {[−0.05,0.05]} {[−0.05,0.05]}
hy {} {[−2.01,−1.99], [−1.03,−1.03], [2.93,3.01]}
ḣy {[−0.05,0.05]} {[−0.05,0.05]}
hz {} {[11.92,12.00], [12.40,12.41], [13.76,13.89]}
ḣz {[−0.05,0.05]} {[−0.05,0.05]}
yT B {} {[−2.55,−2.34], [0.05,0.17], [2.65,2.75]}
ẏT B {[−0.05,0.05]} {[−0.05,0.05]}
yBT {} {[−5.57,−5.55], [−4.73,−4.71]}
ẏBT {[−0.05,0.05]} {[−0.05,0.05]}
xRL {} {[0.00,0.21]}
ẋRL {[−0.05,0.05]} {[−0.05,0.05]}
xLR {} {[−0.20,0.01], [3.60,3.80]}
ẋLR {[−0.05,0.05]} {[−0.05,0.05]}
zBT {} {[−0.08,0.20]}
żBT {[−0.05,0.05]} {[−0.05,0.05]}
zF {} {[−0.00,0.45], [10.50,10.51]}
żF {[−0.05,0.05]} {[−0.05,0.05]}
TL {} {[−1.81,−1.45], [−0.09,0.23]}
ṪL {[−0.05,0.05]} {[−0.05,0.05]}
TR {} {[12.28,15.12], [20.76,21.07]}
ṪR {[−0.05,0.05]} {[−0.05,0.05]}
TT {} {[−2.81,−1.64], [−0.01,0.24]}
ṪT {[−0.05,0.05]} {[−0.05,0.05]}
cx {} {[−1.65,−1.61], [1.40,1.47], [1.93,2.00]}
ċx {[−0.05,0.05]} {[−0.05,0.05]}
cy {} {[−2.12,−2.11], [−2.07,−1.92], [0.54,0.83]}
ċy {[−0.05,0.05]} {[−0.05,0.05]}
T Boolean Boolean
bang Boolean Boolean

91

Table 8.4 shows the action for moving the block to the left edge of the table. The
third plan says that the robot should pick up the block (T = true). During many runs, the
agent also learns that if it sets xLR to zero, then the block will move to the left. This means
it needs to hit it with the left side of its hand. The plans for grabbing the block shown in
Table 8.5 all specify that the agent should put its hand over the block and move it down. The
plans for making the block hit the floor shown in Table 8.6 specify that the block should
hit the floor (zF) in the context. A better plan would be to make zF be zero and then cause
bang→true, but this particular agent was not able to reliably set zF to zero, and so that plan
was not available to it.

Table 8.2: Action a(ḣx, [+]): move hand toward the left (rel(a) = 0.97)

DBN ri brel(ri) H(ri) Coi rel(oi)

〈{hx} : ux→(331.27,+∞)⇒ ḣx→[+]〉 0.97 0.27 {} 0.97

Table 8.3: Action a(ẋLR, [+]): move hand left w.r.t. block (rel(a) = 0.97)

DBN ri brel(ri) H(ri) Coi rel(oi)

〈{zBT } : ux→(331.27,+∞)⇒ ẋLR→[+]〉 0.96 0.40 {} 0.96

〈{T} : ḣx→[+]⇒ ẋLR→[+]〉 0.96 0.26 {} 0.99

〈{} : ẋRL→[+]⇒ ẋLR→[+]〉 0.95 0.28 {} 0.78

Table 8.4: Action a(ṪL, [+]): move block towards left edge of table (rel(a) = 0.28)

DBN ri brel(ri) H(ri) Coi rel(oi)

〈{zBT ,cx} : ẎBT→[+]⇒ ṪL→[+]〉 0.26 0.38 {} 0.21

〈{zBT ,hx} : żBT→[−]⇒ ṪL→[+]〉 0.24 0.31 {} 0.08

〈{T,zBT } : ḣx→[+]⇒ ṪL→[+]〉 0.86 0.28 {xLR,hy} 0.37

8.2 Dynamics, Hidden State, Probability, and Noise

Noise can come from any form of nondeterminism. QLAP handles nondeterminism well
because it uses statistical learning and probabilistic models. In the environments discussed
in Chapter 7, there is noise from three sources:

92

Table 8.5: Action a(T, [+]): grab the block (rel(a) = 0.26)

DBN ri brel(ri) H(ri) Coi rel(oi)

〈{cy,cx} : uz→[−0.05,0.05]⇒ T→[+]〉 0.69 0.32 {} 0.06

〈{xLR,hy} : uz→(−∞,−0.05)⇒ T→[+]〉 0.80 0.48 {} 0.39

〈{cx,cy} : hz→[13.76,13.89]⇒ T→[+]〉 0.80 0.50 {} 0.43

Table 8.6: Action a(bang, [+]): hit the block to the floor (rel(a) = 0.04)

DBN ri brel(ri) H(ri) Coi rel(oi)

〈{zF} : ṪL→[+]⇒ bang→[+]〉 0.93 0.10 {} 0.08

〈{zF} : ṪR→[+]⇒ bang→[+]〉 0.93 0.08 {} 0.10

1. hidden state from dynamics,

2. incomplete or incorrect models, and

3. quirks in the simulator.

8.2.1 Noise from Dynamics

Dynamics is how a physical process changes over time. Dynamic environments tend to
have aspects that are not directly observable. In QLAP, acceleration is not observable and
neither is momentum. And in Laplace’s conception of natural phenomena, hidden state
leads to nondeterminism [Pearl, 2000]. By contrast, in grid worlds like the taxi domain
[Dietterich, 2000] or in Drescher’s grid world [Drescher, 1991], all variables that affect the
dynamics of the environment are observable.

8.2.2 Noise from Incomplete or Incorrect Models

QLAP builds models from the bottom up using a hillclimbing process. This means that
models will often be incomplete. For example, QLAP learns the DBN

〈 /0 : ux→[+]⇒ ḣx→[+]〉 (8.1)

that says that if the agent applies positive force, then the hand will move in the positive x
direction. This DBN is reliable only about a third of the time because it requires a force of
300 units to move the hand. Once the agent learns that distinction, and the distinction that
if the hand is already at the farthest point on the x axis it can no long move, then the DBN

93

becomes more reliable
〈hx : ux→(300,+∞)⇒ ḣx→[+]〉 (8.2)

Discretizing the environment allows for generalization as discussed in Chapter 1,
but if the discretization is not perfectly correct, it also leads to noise. For example, because
of statistical sampling and noise from hidden state, QLAP may learn a landmark on ux

at 285 instead of 300. This will lead to noise because motor values are chosen randomly
within the interval, and the hand will not move each time a value of less than 300 is chosen.
Randomly choosing values within intervals can also lead to other noise. How long it takes
for the hand to begin moving depends on where the chosen value for ux falls in the range
(300,+∞).

There is also noise from unusual situations that may not be accounted for by learned
models. For example, when the hand is on top of the block, the hand may not move even if
ux > 300 because it may be stuck. Table 8.7 shows an example of the hand being stuck and
moving almost as slowly as ux being just barely above 300 (shown in Table 8.8).

Table 8.7: Friction impedes movement
when the hand is on top of the block (ux =
500).

t h̃x
˜̇hx ḣx

940 −2.34 0.07 [+]

941 −2.33 0.07 [+]

942 −2.33 0.07 [+]

943 −2.33 0.07 [+]

944 −2.32 0.07 [+]

945 −2.32 0.07 [+]

946 −2.32 0.07 [+]

947 −2.31 0.07 [+]

948 −2.31 0.07 [+]

Table 8.8: The hand moves slowly when
given a relatively small force (ux =−305).

t h̃x
˜̇hx ḣx

9 0.00 0.00 [0]

10 0.00 −0.01 [0]

11 0.00 −0.02 [0]

12 0.00 −0.03 [0]

13 −0.01 −0.04 [0]

14 −0.01 −0.06 [−]

15 −0.01 −0.07 [−]

16 −0.02 −0.08 [−]

17 −0.02 −0.09 [−]

18 −0.03 −0.11 [−]

19 −0.03 −0.12 [−]

20 −0.04 −0.13 [−]

94

8.2.3 Noise from the Simulator

The Breve environment based on ODE displays some unexpected behavior. For example,
the robot sometimes shakes when the hand hits a limit of movement. This event causes the
variable values to fluctuate as shown in Tables 8.9 and 8.10.

Table 8.9: The hand dips in the y direction when the hand hits the limit of movement in the
x direction.

t h̃x
˜̇hx ḣx h̃y

˜̇hy ḣy

158 1.11 8.23 [+] 3.00 0.00 [0]

159 1.55 8.72 [+] 3.00 0.00 [0]

160 2.01 9.22 [+] 3.00 0.00 [0]

161 2.49 9.72 [+] 3.00 0.00 [0]

162 2.49 −0.13 [−] 2.93 −1.34 [−]

163 2.49 0.15 [+] 2.91 −0.55 [−]

164 2.50 0.12 [+] 2.91 0.00 [0]

165 2.50 0.00 [+] 2.91 0.00 [0]

8.2.4 QLAP could implement smoothing

One type of noise not handled by the current implementation of QLAP is large Gaussian
noise. Imagine a variable ṽ whose trend is increasing, but ˙̃v is jumping up and down. Such
a situation would be difficult for QLAP because the event v̇→[−] would be triggered when
it was not relevant. QLAP could handle such a situation by segmenting the time series. For
example, by using a piecewise linear representation [Keogh et al., 2001]. A related issue
is that the current implementation does not distinguish between a direction of change event
that lasts for a long time and one that lasts for a short time. In some applications, if the
value of a variable increases or decreases for a short number of timesteps, it may not be a
noteworthy event. A smoothing mechanism could also handle this case, but one would have
to determine what amount of smoothing was appropriate for the environment.

8.3 Theoretical Bounds

QLAP is reasonable efficient in time and space. Let V be the number of variables. There
are fewer than 9 landmarks learned per variable (usually between 2 and 4), which means

95

Table 8.10: The hand dips in the z direction when the hand hits the limit of movement in
the y direction.

t h̃y
˜̇hy ḣy h̃z

˜̇hz ḣz

795 −1.01 −9.16 [−] 14.95 −0.01 [0]

796 −1.49 −9.72 [−] 14.95 −0.01 [0]

797 −2.01 −10.27 [−] 14.95 −0.01 [0]

798 −2.00 0.16 [+] 14.94 −0.13 [−]

799 −2.00 0.01 [0] 14.93 −0.13 [−]

800 −2.00 0.00 [0] 14.93 −0.09 [−]

801 −2.00 0.00 [0] 14.93 −0.04 [0]

802 −2.00 0.00 [0] 14.92 −0.01 [0]

there are fewer than 19 qualitative values per variable. Table 8.11 lists some values that are
used in the subsequent discussion.

Table 8.11: Variables used to determine theoretical bounds.

Variable Definition
NQ Number of qualitative values, which is fewer than 19V .
NR Number of DBNs. Theoretically, the number of DBNs is

O((NQ)2) and therefore is O(V 2). In practice, we observe
about 250 DBNs on average on 34 variables in the core
environment.

NP Number of Plans. This is 3NQ, which is O(V).

8.3.1 Learning Contingencies

QLAP tracks statistics for each pair of events.2 This means that learning contingencies is
O((NQ)2) (and therefore O(V 2)) in both time and space.

2QLAP does not track statistics on consequent events of magnitude variables because those are covered by
magnitude DBNs.

96

8.3.2 Adding Context to DBNs

For each DBN, QLAP looks at each variable to see if it should be added to the context.
That makes context learning O(V NR), and therefore O(V 3), time. For space, each DBN
has to store the qualitative values of all the variables each time its antecedent event occurs.
This storage is limited to the last 200 times the antecedent event occurred. So storage is
O(200NRV) and therefore is O(V 3).

8.3.3 Learning Landmarks on DBNs

For each DBN, QLAP saves the real value of each variable the last 200 times the antecedent
event of the DBN occurred (although in the implementation, the data trace is saved and the
DBN just stores the line number). To learn DBN landmarks, for each DBN, QLAP looks
for a landmark on each variable v in 200−1 locations. So space and time on learning DBN
landmarks is O(200NRV) and therefore is O(V 3).

8.3.4 Learning Landmarks on Events

For each event E, QLAP creates a histogram with a fixed number of buckets for each vari-
able V and looks at each bucket as a potential landmark. Therefore, learning event land-
marks is O(V 2) in time and space.

8.3.5 MDP Planning

MDP planning is known to be computationally expensive because the state space grows
exponentially with the number of variables. MDP planning using dynamic programming is
O(S2A), where S is the number of states, and A is the number of actions. Fortunately, the
state spaces for MDPs in QLAP are small. Each MDP can have no more than 6 variables,
so S ≤ 6× 19 = 114. QLAP actions bring the agent to a qualitative value of a variable.
This means that A < 6×19 (not all actions are applicable). Time and storage needed for an
MDP plan therefore is less than 1143. There are NP ≤ 3V plans. So time and storage for
MDP planning is O(1143×3V). This is still a big number, but most plans have fewer than
6 variables.

8.4 Thresholds and Parameters

In addition to the parameters that come from reinforcement learning as discussed in Chap-
ter 5, QLAP has four kinds of parameters:

1. Thresholds to determine if enough statistics have been gathered (see Appendix B).

97

2. Parameters to determine how much resources should be used. For example, a thresh-
old to determine how much history to save. The settings of these are manually deter-
mined by the computational and storage resources available to the agent.

3. Thresholds to determine if a decision should be made. For example, a threshold to
determine if a landmark should be created or if a DBN should be created. These are
the most critical. None of these thresholds (or any other thresholds) needed to be
reset when QLAP was run on the Pong environment. A table of these parameters is
shown in Appendix G.

4. Parameters for exploration. These thresholds include how long to motor babble be-
fore starting exploration using actions, and how often to take a random action, and
how many timesteps random actions should last. It is important that the agent does
not get stuck on one small part of the state space. This can happen, for example, if
the agent learns a landmark on a upper limit of a variable v and no other landmarks
on v. In this case, if nothing else in the dynamics of the environment changes the
value of v, then the agent may spend all of its time at the upper limit of v.

8.5 Hierarchy

QLAP learns a hierarchy of plans and actions, but this hierarchy is not strict because there
is no ordering of the variables. The hierarchy is loosely maintained because the agent is
required to be able to reliably achieve the antecedent event before a new plan can be added.
But there is no guarantee about context variables being “below” in the hierarchy, or even
having plans. QLAP is designed this way because exploratory experiments demonstrated
that learning a strict hierarchy was too brittle. This brittleness came from race conditions in
the learning of representations.

The brittleness of learning a strict hierarchy in continuous environments is an in-
teresting finding. Most previous work on learning hierarchy has been done on grid-like
environments, e.g. [Vigorito and Barto, 2008; Dietterich, 2000] where the desired hier-
archy is generally clear. An interesting direction for future work would be to determine
in what types of environments is a strict hierarchy possible or desired. And when a strict
hierarchy is not possible or desired, what kinds of non-strict hierarchies should be used.

98

Chapter 9

Related Work

QLAP is the only algorithm that we are aware of that learns states and hierarchical actions
in continuous, dynamic environments with continuous motors through autonomous explo-
ration. The closest direct competitor to QLAP is the work of Barto, Jonsson, and Vigorito.
Given a DBN model of the environment, the VISA algorithm [Jonsson and Barto, 2006]
creates a causal graph which it uses to identify state variables for options. Like QLAP, the
VISA algorithm performs state abstraction by finding the relevant variables for each op-
tion. Jonsson and Barto [2007] learn DBNs through an agent’s interaction with a discrete
environment by maximizing the posterior of the DBN given the data by building a tree
to represent the conditional probability. Vigorito and Barto [2008] extends [Jonsson and
Barto, 2006, 2007] by proposing an algorithm for learning options when there is no specific
task.

This work differs from QLAP in that learning takes place in discrete environments
with events that are assumed to occur over one-timestep intervals. The work also assumes
that the agent begins with a set of primitive actions. Because QLAP is designed for continu-
ous environments with dynamics and does not assume a set of primitive actions, QLAP uses
a qualitative representation. This qualitative representation leads to a novel DBN learning
algorithm for learning predictive models, and a novel method for converting those models
into a set of hierarchical actions.

In the remainder of this chapter we survey the related literature and discuss how
particular aspects of different approaches compare with QLAP.

9.1 Autonomous Learning

We say that an agent learns autonomously if it learns models and actions without being
directed what to learn. We also assert that autonomous learning should happen over a long,
continuous time period, as opposed to learning that occurs as a sequence of episodes set by
the experimenter. Drescher’s Schema Mechanism [Drescher, 1991] and the work on Neo

99

by Cohen et al. [1997] are important precursors to QLAP. Neo learns common sequences
of events in a discretized environment where there was no explicit goal.

Drescher’s system learns STRIPS-like rules called schemas in a discrete environ-
ments that link together a context, an action, and a result. The example schema

〈InFrontO f Door|OpenDoor|DoorOpen〉 (9.1)

given in [Chaput, 2004] states that if the robot is in front of the door, and it opens the door,
then the door will be open. Learning begins by creating a bare schema 〈|a|〉 for each action
a. Schemas are then grown by a method Drescher calls marginal attribution. The schema
〈|a|〉 is spun off to 〈|a|r〉 if the result event r is more likely to follow a than otherwise. A
context item c is added to 〈|a|r〉 resulting in 〈c|a|r〉 if the schema is more reliable when c
is true. Because of the “spinning off” of new schemas, there can be multiple schemas that
predict the same result. In QLAP, the learning of multiple small models to predict events,
and the method for adding context variables to DBNs were directly inspired by Drescher.

Shen’s LIVE algorithm [Shen, 1994] learns a set of rules in first-order logic and then
uses goal regression to perform actions. The algorithm assumes that the agent already has
basic actions, and the experiments presented are in environments without dynamics such
as the Tower of Hanoi. Another method for learning planning rules in first-order logic is
[Zettlemoyer et al., 2005; Pasula et al., 2007]. The rules they learn are probabilistic, given a
context and an action their learned rules provide a distribution over results. This algorithm
assumes a discrete state space and that the agent already has basic actions such as pick up.

Oudeyer, Kaplan, and Hafner [Oudeyer et al., 2007] created a system for autonomous
developmental learning driven by the agent’s ability to predict its environment. The history
of the agent is divided into cells based on the state vector S(t), the motor vector M(t), and
the next state vector S(t + 1). Each cell has an expert that predicts the next state S(t + 1)
given a state and action SM(t) in that cell. To choose actions, the agent takes the current
state S(t) and finds the action that would put it in the cell whose expert is improving the
fastest in its ability to predict the next state. When a cell has seen 200 data points it is
split into two new cells. The split is done by finding a cutpoint on an input variable s ∈ S
that splits the cell so that the variance of the next states S(t + 1) in the new cells is mini-
mized. In a simulated experiment with a two-wheeled robot, and with an experiment with a
physical Aibo robot in a playground environment, the robots were able to learn interesting
behaviors. In both cases the input vectors to the robots were small (one continuous variable
for the two-wheeled robot, and three Boolean variables for the playground experiment) and
it is unclear if the variance-based cutpoint splitting mechanism would be able to find sen-
sible splits in environments with higher dimension sensory input. In a more recent paper
[Baranes et al., 2009], the splitting mechanism is improved to maximize the dissimilarity
of learning progress.

100

9.2 Learning Models

One classic bootstrapping algorithm for learning models is Structural EM [Friedman, 1997,
1998]. Structural EM is used when there are hidden variables or missing values. QLAP
assumes that the agent is able to observe the important variables. In the case where the vari-
ables are observable, the standard algorithm for learning structure in probabilistic models is
to keep counts of co-occurrences of variables values and to define a scoring function (typi-
cally BIC or MDL) for a network and parameters and then to perform a hillclimb search to
try to maximize that score [Heckerman, 1995; Friedman et al., 1998]. In iid environments,
this method can even be used to find discretizations of variables by inserting a discretization
step in the search and scoring method [Friedman and Goldszmidt, 1996].

There has been work to adapt this process of structure learning to learning in se-
quential decision processes where the environment can be modeled as a factored MDP.
Degris et al. [2006] proposed a method called SDYNA that learns a structured representa-
tion in the form of a decision tree and then uses that structure to compute a value function.
Strehl et al. [2007] learn a DBN to predict each component of a factored state MDP. Hester
and Stone [2009] learn decision trees to predict both the reward and the change in the next
state. All of these methods are evaluated in discrete environments where transitions occur
over one-timestep intervals.

A classic paper in data mining on learning rules from time-series data is [Das et al.,
1998]. They cluster sequences of values to discretize the data, and they then learn rules
using the discretized values to predict other discretized values. A method for learning
probabilistic planning rules is proposed by Schmill [Schmill, 2002]. Schmill’s algorithm
learns planning operators that given a context and an action provide a distribution over
results. The context is represented using a decision tree. The results predicted by operators
come from increases or decreases in variable values [Schmill et al., 1998] or by clustering
of the sensory information [Schmill et al., 2000]. This method differs from QLAP because
QLAP considers any distinctions found in the context of any contingency as broadly useful
to the agent allowing it to form the antecedent event of new contingencies. Additionally, all
operators are on motor variables, where QLAP allows arbitrary events.

9.2.1 The Approach Taken by QLAP

QLAP uses a qualitative representation to discretize the environment. QLAP learns land-
marks and then uses those landmarks to define special variables to create the DBN. This
allows QLAP to handle transitions that occur over more than one timestep.

Contrary to [Degris et al., 2006; Vigorito and Barto, 2008; Strehl et al., 2007],
QLAP does not learn a different DBN for each action-result combination. Instead, QLAP
learns DBNs by first observing a contingency, and then adding context variables using
marginal attribution. If the antecedent event for a contingency is not on a motor variable,
QLAP still treats it like a primitive because QLAP creates high-level actions for each known

101

event. Treating the antecedent event like a primitive action leads to a hierarchy, because it
can be called as part of a plan without having to know the details of how it is implemented.

The approach to learning models taken by QLAP may result in multiple models
that predict a consequent event (each with a different antecedent event). This is important
because since we want to make these models into plans, it is imperative that models be small
so that the resulting plans have a small state space. So instead of having fewer larger models
covering many situations, QLAP learns many, smaller models that are situation specific.

9.3 Learning a State Abstraction

As described in Chapter 1, QLAP builds on the motor primitive abstraction learned by
[Pierce and Kuipers, 1997] and the identified-objects abstraction learned by [Modayil and
Kuipers, 2007]. QLAP builds on these abstractions in two ways. (1) QLAP identifies states
by learning landmarks for a qualitative representation (2) QLAP identifies a small set of
important variables for each learned plan.

9.3.1 Discretizing the Space

In our experiments, a simulated robot learns to hit a block while exploring the world. In the
process of learning how to hit a block, the robot learns that if its hand is on the left side of
the block, then the block will go to the right. This is interesting because initially the robot
has no concept of “the left side of the block.” It learns that there is such a thing as having its
hand on the left side of the block, and this knowledge allows it to map the infinite number
of possible states where its hand is on the left to a single state. By learning to hit the block,
the robot has learned to see the world in a more useful way.

QLAP discretizes the space by iteratively learning new distinctions that make ex-
isting models more reliable. It finds these discretizations using the method of Fayyad and
Irani [1992] originally designed for finding discretizations in decision trees [Quinlan, 1993].
Each new discretization allows new models to be learned, and so there is a synergy between
the models and the discretization. Friedman and Goldszmidt [1996] also does a loop be-
tween model learning and discretization, and they also use the method of Fayyad and Irani
[1993] (although they use the 1993 version that uses the minimum description length princi-
ple to determine the cut points, and in our experiments this produced too many landmarks).
Friedman and Goldszmidt [1996] learn one large model instead of many small models as
QLAP does, and their method is not for sequential decision tasks. We found that learning
Bayesian networks purely for prediction was different than learning Bayesian networks that
would later be used for planning. For example, we found that we needed to use the idea
of best reliability (brel) described in Chapter 4 as a scoring metric because it might be im-
portant to find some state in which the transition is reliable, even if the transition cannot be
predicted in other states.

102

Goodman et al. [2007] also simultaneously learn a model and a discretization. They
treat each discretized value as a Boolean variable, and then use those variables to learn
Bayesian models. The discretization comes by finding square regions of a two-dimensional
space such that models with high posterior probability can be built.

Clustering

Another way to discretize the input space is to use clustering. Cohen et al. [1997] did
work with abstracting sensor input using clustering of time series data. Provost and Kuipers
[2007] use a growing neural gas self-organizing map (SOM) [Fritzke, 1995] to discretize
the environment. They then learned control laws to allow a robot to get from one winning
SOM node to another. Clustering is an important abstraction tool when the statistics of the
sensory input are such that clustering can find meaningful states for the robot. However,
clustering can miss subtle but important distinctions that may be small in the statistics of
the data, but large with respect to the goals of the robot. For example, consider a Skinner
box [Skinner, 1961]. To a clustering algorithm all of the small details of the box may be
equally important, but the important feature indicating the coming electrical shock may be
a small red light (a similar point was made in [Goodman et al., 2007]).

U-Tree

McCallum [1996] created the U-Tree algorithm. Given a set of discretized variables, the
U-Tree algorithm learns a state space that includes relevant history. In U-Tree, a new state
is created if it leads to a difference in reward. In QLAP, new states are learned not based on
reward, but rather based on the ability to make predictions.

Jonsson and Barto [2001] use U-Tree to define a state space and a policy for a set
of options defined for the Taxi task [Dietterich, 2000]. They assigned a different U-Tree
for each task. Uther and Veloso [2003] extend U-Tree to work with continuous variables
by finding cutpoints that maximize differences in the reward received on each side of the
cutpoint.

Adaptive Partitioning

Reynolds [2000] proposed a way to refine the resolution of a Q-function. Regions are split
if the best action is different in adjacent regions. Like QLAP, the representation begins
course and is progressively more refined. But the refinements are based on reward, and
not the ability to predict the next state as is done in QLAP. Stone et al. have also done
work on learning representations. Sherstov and Stone [2005] enable a learning algorithm
to autonomously set the generalization parameter for learning using tile coding. Whiteson
and Stone [2006] propose a method for learning of representations for TD-learning using
evolutionary function approximation.

103

9.3.2 Finding the Right Variables

As mentioned previously, given a DBN model of the environment, the VISA algorithm
[Jonsson and Barto, 2006] creates a causal graph which it uses to identify state variables
for options. And there has been work on state abstraction [Jong and Stone, 2005] that finds
the relevant variables by using hypothesis testing or Monte Carlo simulation to determine
which variables should be included to express an optimal policy.

9.4 Learning Actions

QLAP does not assume a set of actions, it learns the agent’s first actions from a learned
representation. This representation includes a learned discretization of the motor space.
Another way of learning in continuous environments is Binary Action Search (BAS) [Pazis
and Lagoudakis, 2009]. BAS allows many known RL algorithms to learn to execute contin-
uous action policies. The key to moving to continuous actions is that instead of choosing an
action at each timestep, BAS chooses to increase or decrease the current action (thus using
a binary policy). To determine how much to increase or decrease the current action, BAS
uses binary search to query the current binary policy to find the best amount it should be
modified.

In addition to the continuous action learners discussed in the introduction, Deisen-
roth and Rasmussen [2009] learn transition dynamics using a Gaussian process. These
learned transition dynamics are then used to learn a value function and a policy. Another
method for learning actions is Parti-game [Moore and Atkeson, 1995]. Parti-game allows an
agent to reach a goal by breaking up the state space into cells, but it requires a controller to
get from one cell to another. Building on this, [Munos and Moore, 1999] does fine-grained
discretization for control, but it needs to be provided a model.

Modayil and Kuipers [2007] learn actions by first motor babbling and then extract-
ing actions that measure high on a scoring function that consists of the geometric mean
of the precision, recall, and reliability of the action. This work is similar to QLAP in that
actions are learned with no specific goal in mind, and can later be used to achieve specific
goals. This work differs from QLAP in that the actions do not use MDP planning and are
not hierarchical, but instead are based on control laws.

9.5 Learning Hierarchy

The hierarchy in QLAP comes from plans calling learned QLAP actions instead of built-in
action primitives.

104

9.5.1 The MAXQ Value Function Decomposition

QLAP’s learned structure of actions and plans is reminiscent of the MAXQ value function
decomposition [Dietterich, 1998]. In MAXQ, the agent’s capabilities are represented by
a hierarchy of subtasks. The hierarchy consists of two types of nodes: Max nodes and Q
nodes. Each Max node corresponds to a separate subtask Mi, and the children of Mi are Q
nodes that are the actions available to Mi. Each Q node in turn has a single child that is
a Max node to carry out the action. Ghavamzadeh and Mahadevan [2001] extend MAXQ
to continuous-time SMDPs. Jong and Stone [2008] combine MAXQ with a model-based
approach. They learn the transition and reward function models and use that to compute the
decomposed value function.

Each task node of MAXQ roughly corresponds to a plan in QLAP, and each ac-
tion node in MAXQ roughly corresponds to an action in QLAP. One difference is that in
QLAP, an action can choose from multiple plans and choose the best one for the current
situation. One significant difference in objective is that QLAP is not trying to represent a
single, underlying MDP. A QLAP agent receives no external reward, and instead is trying
to autonomously learn a set of skills. And so there is no single root node as in MAXQ.
QLAP defines its own actions and plans as it learns, and as the agent learns a more refined
discretization the hierarchy changes.

9.5.2 Other Work on Learning Hierarchy

There has also been much work on learning hierarchy. Like QLAP, Digney [1996] creates a
task to achieve each discrete value of each variable. However, QLAP learns the discretiza-
tion.

Work has been done on learning a hierarchical decomposition of a factored Markov
decision process by identifying exits. Exits are combinations of variable values and actions
that cause some state variable to change its value [Jonsson and Barto, 2006]. Exits roughly
correspond to the DBNs found by QLAP except that there is no explicit action needed for
QLAP DBNs. Hengst [2002] determined an order on the input variables based on how often
they changed value. Using this ordering, he identified exits to change the next variable in
the order and created an option for each exit.

9.6 Creating Reinforcement Learning Problems

QLAP carves out important states in the environment by finding states that make predictive
models more reliable. And given the current state abstraction, QLAP generates reinforce-
ment learning problems to get to desired states. Many methods exist to learn options from
a given discretization. McGovern and Barto [2001] proposed a method whereby an agent
autonomously finds subgoals based on bottleneck states that are visited often during suc-
cessful trials. Subgoals have also been found by searching for “access states” [Simsek and

105

Barto, 2004; Simsek et al., 2005] that allow the agent to go from one part of the state space
to another. Our focus on learning distinctions also distinguishes our work from the hier-
archical reinforcement work of Bakker and Schmidhuber [2004], which clusters low-level
observations.

A learning agent can also define options to achieve salient states [Barto et al., 2004;
Stout et al., 2005; Singh et al., 2005]. Bonarini et al. [2006] define options for states that
are rarely reached or are easily left once reached. Both of these bodies of work define an
intrinsic reward signal based on prediction error, motivating the agent to explore parts of
the space for which it currently does not have a good model.

Konidaris and Barto [2010] propose an algorithm that learns options in a chain. It
first learns an option to get to the goal within 250 timesteps of the goal. Since this is a
continuous environment, the algorithm uses regression to learn what parts of the space fall
within this 250 timesteps (to be the set of initiation states for the next option). Once it has
learned this option, the agent learns an option to reach this first set of initiation states, and
so on. The agent uses function approximation to learn a policy for each option. This allows
the function approximator to focus on a smaller part of the space.

106

Chapter 10

Future Work

Future work in QLAP entails enabling the algorithm to handle more complex environments.
For example, how can a developing agent learn complex actions in huge environments?
And, what kind of developmental milestones would we want to lay out for the agent? And
to achieve these milestones, how can an agent learn more complex representations? Also
of interest, is how can QLAP be used as scaffolding for continuous methods such as regres-
sion. And how can QLAP be scaled up to very large numbers of variables through active
perception. This chapter discusses these topics.

10.1 Navigating the Space of Environmental Configurations

A developing agent has to search through a huge space of environmental configurations.
For example, in the secondary block environment in Chapter 7, the environment had to be
configured so that the blocks were aligned in order to use one block to hit another. How can
an agent navigate this large space? And since learning actions requires practice, it is not
sufficient to just arrive at the configuration once. The agent needs to be at the configuration
repeatedly. This section presents two possible approaches to this problem. The first is social
learning, and the second is intrinsic valuation of events.

10.1.1 Social Learning

Other agents can point out what is worth learning, can guide the agent to achieve the pre-
requisites for actions, and can guide the agent on how to perform the actions. One way that
the benefits of social learning can be achieved is through imitation. But learning through
imitation is a challenge because the “student” agent has to map the actions and movements
of the “teacher” agent onto its own body. Since QLAP learns representations autonomously,
it might have an advantage in such learning because it could map what the teacher agent is
doing using its learned representation.

107

An interesting first experiment would be to have one agent guess the intention of
another agent. The two agents would be allowed to develop independently, each running
QLAP. Then we could allow a teacher agent to explore and see if the student agent can guess
the goal of the teacher agent using the data trace from the teacher agent. The student agent
would guess the goal by picking its own action that would be most likely given the data
trace. The performance of the student agent on this task could be compared with supervised
learning algorithms. Once it was established that the student agent could guess the goal of
the teacher agent, the teacher agent could be used to guide the development of the student
agent.

10.1.2 Intrinsic Valuation of Events

If there is some way, such as social interaction, of specifying events worthy of special
attention, then the agent may be able to do intrinsically-motivated exploration. Intrinsically-
motivated exploration is done in a grid world by Barto et al. [2004], where interesting events
are specified by the experimenter and the agent creates an option to achieve each interesting
event. An analog to this process could be implemented in QLAP. When an interesting event
occurred, the agent could note the qualitative state and try to get back to that state in the
future. The agent would have to figure out how to narrow this qualitative state down to the
important variables. These variable values could then have intrinsic value to the agent.

10.2 Reaching Developmental Milestones

QLAP provides an algorithm for autonomous learning in continuous environments. This
algorithm could allow us to further explore what it takes to autonomously learn complex
behavior. With children and animals, we can modify the environment and experimental con-
ditions, but we cannot directly modify the learning algorithm. QLAP allows us to perform
experiments by manipulating the algorithm. Some interesting tasks for further research
would be:

1. Design a cup with a coffee-cup like handle and see if the agent can learn to pick up
the cup by putting a stick through the loop.

2. Provide a box and small objects and see if an agent can learn to put small objects in
the box, move the box, and spill out the objects. See if the agent can learn that the
objects move when the box moves.

3. Provide the agent with a stick and see if it can use the stick to move a block.

4. Provide the agent with multiple blocks and see if the agent can learn to:

(a) push other blocks with the grasped block

108

(b) knock other blocks with the grasped block

(c) push one block away with the grasped block

(d) let go of the grasped one, and push both with the previously grasped one

(e) push a “train” of blocks until the end one falls off the table

5. Provide blocks of different shapes, such as long blocks or L-shaped blocks, and see
if the agent can use them as tools. For example, see if the agent can use the L-shaped
block to bring a distant block closer.

10.3 Creating New Representations

QLAP learns DBNs, plans, and actions based on the variables given, but there is nothing in
QLAP that prevents it from using new variables acquired during development. This section
proposes some ways that could be done.

10.3.1 Learning new variables by trying combinations

One could use a method such as [Stober and Kuipers, 2008] to generate many potential
variables from combinations of existing variables. For example, it could be that if for two
existing variables A and B that if At−Bt = 90 then a DBN r successful. In this case it would
make sense to create a new variable V = A−B with a landmark at 90. This method could
result in many variables, but this problem should be mitigated somewhat if variables are
only added when they do some measurable good. In Chapter 7, we saw that variables could
be added without significantly degrading performance. This ability of QLAP to work with
additional variables should help to mitigate the stagnation problem of the algorithm being
overwhelmed by variables [Lenat and Brown, 1984]. One possibility entails seeing how
QLAP could be used in a massively parallel environment. Many variables and transforms
of variables could be generated and tested, and added to the system if they are found to be
valuable.

10.3.2 Learning more complex representations

Consider the example of one block sitting on top of another block. How could this state
be represented in QLAP? Currently, it would have to be represented as a conjunction of
variables. For example, for two blocks b1 and b2, to represent the state that b1 is on top of
b2, we would need the cumbersome representation

b1
x = b2

x ∧ b1
y = b2

y ∧ b1
z > b2

z (10.1)

This formula abstracts many low-level states, and we would like to refer to all of those
states using a single symbol. Using a single symbol, we can start to predict results of being

109

in this state or when this state will occur. We refer to this problem of creating a symbol
to represent an important state as the state abstraction problem, and we call such states
high-level states.

There is another representational issue, the event abstraction problem is the problem
of abstracting time-series data into a single event. Consider the event of block b1 falling
off block b2. This event takes more than one timestep and involves a change in multiple
variables. We refer to such events as high-level events.

If we can define high-level states, then we can define high-level events as transitions
between high-level states. If we do this, the set of possible solutions to the state represen-
tation problem is the set of ways to group variables (and variable values) into high-level
states.

To aggregate these states, we can consider both bottom-up and top-down approaches.
One bottom-up method is to identify high-level states as those that are stable. We define
states as stable as those that come up often and stay that way for a relatively long time. One
block on top of another is stable, and two blocks sitting on a table is also stable. Another
example is a block sitting on the floor after it has fallen off the table. Defining a high-level
state as a block sitting on the floor allows us to define the high-level event of the block
falling off the table without specifying an additional variable. The high-level event is the
transition from the high-level state of the block being on the table to the high-level state
of the block being on the floor. By contrast, a top-down approach would be to look for
“important” states that are associated with positive outcomes for the agent.

However, sometimes we may be interested in the way a transition takes place. For
example, the agent may want to learn the difference between slide and tumble. We might
want the agent to learn that pushing sideways from the middle of the block will cause it to
slide, but pushing from the upper edge will cause it to tumble.

10.4 Qualitative Model as Scaffolding

We can think of the qualitative model of the environment learned by QLAP as a type of scaf-
folding, as shown in Figure 1.1. QLAP breaks up the world in three different ways. First,
QLAP breaks up the world by learning landmarks. This creates a discrete state space. Sec-
ond, QLAP breaks the world up into small clusters of variables through the DBN and MDP
learning. And third, QLAP learns actions which result in qualitative trajectories through
space.

Breaking up the world into a state space and small sets of variables could be use-
ful for regression. Regression has no notion of state, and so while regression may be able
to predict a little way ahead with high accuracy, it can have trouble where the landscape
changes. The factoring of the environment provided by QLAP may allow prediction re-
gression to be extended to more complex environments. This might be useful, for example,
for predicting when components of a complex system will fail.

110

(a) Qualitative (b) Metrical pieces

Figure 10.1: Metaphor for how QLAP can break up an environment. Chapter 1 discusses
how QLAP is analogous to learning a topological map that breaks up the environment in-
stead of a metrical map. But once QLAP breaks up the environment, continuous methods
can be used within the pieces to get the best of both the qualitative approach used in QLAP
and continuous approaches such as regression. (a) Metaphor for how the environment is
represented by QLAP. (b) Metaphor for how the pieces of the environment are linked to-
gether. Continuous learning can then be done within each piece.

Breaking up the world into trajectories could be useful for other learning methods.
For example, QLAP is able to move the arm through space, but may not do this with the kind
of precision that other methods may be able to attain. However, other methods, for example
regression [Vijayakumar et al., 2005], often need a trajectory to follow to be effective. The
qualitative movements of QLAP could provide this trajectory.

10.5 Scaling up through Active Perception

QLAP could use active perception [Ballard, 1991] to scale up to environments with sig-
nificantly more variables. The agent could acquire the values of the variables by actively
choosing which variables were needed for the current situation. This would allow the agent
to ignore the irrelevant variables.

As a first experiment, consider a scenario with a hand and two blocks. The agent
could choose to know the values of the variables related to two of the three objects at any
timestep. If the agent could also choose to see only the hand, this would result in four
possible choices:

1. see block 1 and block 2,

2. see the hand and block 1,

3. see the hand and block 2, or

4. see only the hand.

111

If the agent could learn to make this choice well, it could reduce computation. For example,
seeing only the hand would be useful at the beginning for learning how to move the hand
because the relational variables between the hand and the blocks would not get in the way.
Later on, it could choose to see the hand and the block its hand was closest to.

10.6 Conclusion

This chapter outlined possibilities for expanding QLAP in the future. It would also be in-
teresting to apply QLAP to problems unrelated to developmental learning. For example,
QLAP could be applied to the problem of fault detection or anomaly detection. QLAP cre-
ates many models of the environment in the form of DBNs. When one of these DBNs are no
longer predictive, it could be an indication that there has been an anomalous event. QLAP
could be used to determine when a system has been hacked or there has been malicious
activity on a network.

Another interesting possible future direction would be allowing QLAP to take ad-
vantage of specific algorithms when they were applicable. For example, if the variables
in the MDP were directly connected to the motor variables, QLAP could use movement
planning (for example, RRT [Kuffner Jr and Lavalle, 2000]). As another example, QLAP
currently assumes that the method of Pierce and Kuipers [1997] can provide orthogonal
motor primitives. Another possibility is first learning the motor primitives using a prepro-
cessing method such as [Sun and Scassellati, 2005].

112

Chapter 11

Summary and Conclusion

The Qualitative Learner of Action and Perception (QLAP) is an unsupervised learning algo-
rithm that allows an agent to autonomously learn states and actions in continuous environ-
ments. Learning actions from a learned representation is significant because it moves the
state of the art of autonomous learning from grid worlds to continuous environments. An-
other contribution of QLAP is providing a method for factoring the environment into small
pieces. Instead of learning one large predictive model, QLAP learns many small models.
And instead of learning one large plan to perform an action, QLAP learns many small plans
that are useful in different situations.

QLAP discretizes the environment using a qualitative representation. A qualitative
representation allows the agent to generalize and to focus on important events. Using a
qualitative representation, QLAP learns a discretization of the environment and a set of
predictive models simultaneously. QLAP begins with a very broad discretization that only
allows the agent to know if a sensory input variable is increasing or decreasing in value.
Then, given the current discretization, QLAP learns a set of possibly unreliable predictive
models. For each model, QLAP can look for a new discretization (qualitative landmark) that
makes the model more reliable. QLAP assumes that such a landmark represents an inherent
discontinuity in the environment, and the landmark is added to the current discretization.
The agent then is able to learn more models, and this process of learning of landmarks
and models creates a cycle leading to increasingly reliable models and an increasingly fine-
grained representation.

The predictive models that QLAP learns are in the form of Dynamic Bayesian Net-
works (DBNs). QLAP uses a novel method for learning DBNs in continuous environments.
This method is based on learning contingencies. A contingency is a pair of events where
the occurrence of the antecedent event leads to the occurrence of the consequent event. To
identify contingencies, QLAP performs a search over pairs of events. Once a contingency is
found, it is converted into a DBN. QLAP then adds context variables to make the DBN more
reliable. Adding context variables and adding new landmarks are two ways that QLAP has
for making DBNs more reliable.

113

Planning in QLAP uses both goal regression and Markov Decision Process (MDP)
planning. Goal regression is advantageous when the plan only uses some of the available
variables. But goal regression has difficulty with nondeterministic transitions. MDP plan-
ning handles nondeterminism well, but grows exponentially with the number of variables
in the state space. QLAP takes advantage of the best of both by creating many small MDPs
and linking them together in goal-regression fashion. Each MDP in QLAP is created from a
learned predictive model. This ensures that the MDP is small because the predictive model
has already identified the important variables.

QLAP creates an action to achieve each qualitative (discrete) value of each variable.
To perform an action, QLAP uses the MDP plans just described. An action can have more
than one plan. This allows different plans to be called in different situations. The actions
within each MDP plan are QLAP actions, and this links the plans and actions together in a
hierarchical, goal-regression like process.

QLAP explores autonomously and tries to learn to achieve each qualitative value of
each variable. To explore, the agent continually chooses an action to practice. To choose
which action to practice, QLAP uses Intelligent Adaptive Curiosity (IAC). IAC motivates
the agent to practice actions that it is getting better at, and IAC motivates the agent to stop
practicing actions that are too hard or too easy.

QLAP was evaluated in environments with simulated physics. The evaluation was
performed by having QLAP explore autonomously and then measuring how well it could
perform a set of tasks. The agent learned to hit a block in a specified direction and to pick up
the block as well or better than a supervised learner trained only on the task. The evaluation
also showed that the landmarks learned by QLAP were broadly useful. Future work will
consist of incorporating continuous learning methods within the discretized representation
learned by QLAP. This should enable QLAP to leverage both best of discrete learning and
the best of continuous learning.

114

Appendix A

Nominal Variables

QLAP can handle nominal variables, such as Boolean variables. Nominal variables can ap-
pear anywhere in DBNs. DBNs with nominal variables as the consequent event are learned
and treated just like direction of change DBNs. Nominal actions are treated like direction
of change actions, and nominal options are treated the same as direction of change options.
Additionally, there are two details

1. To computeAs
r for state s, QLAP subtracts those actions on nominal variables whose

goal is already achieved in state s.
2. For a nominal variable to be part of self, all of its values must meet the two criteria

for self.

115

Appendix B

Computing Probability

QLAP computes statistics by maintaining counts on successes and failures. To determine a
probability ps of success, we let

ps =
#success+α

f ail +α +#success+β
(B.1)

where α = β = 1 is added as a prior. (There are two exceptions: the prior is α = β = 0 for
determining which plan should be replaced (Chapter 6) because it requires 30 activations,
and α = β = 2 when determining if an action is sufficiently reliable (Chapter 6).)

To determine if ps is greater than some threshold, we use a beta distribution. We do
this because we want to consider the number of observations. With more observations, we
can be more sure that a threshold is exceeded.

1. To determine if ps is less than a threshold θ we use the cumulative probability distri-
bution

Pr(ps < θ)≡ beta.cdf(θ ,#success+α,# f ail +β) (B.2)

If Pr(ps < θ) is at least 0.8, then we consider ps to be less than the threshold θ .

2. We consider ps to be greater than a threshold θ if 1−Pr(ps < θ)≥ 0.8.

B.1 Computing Probabilities for Best Reliability

The equation for brel is based on the calculation of reliability in Equation 4.13 so that brel
is

brel(r) = argmax
q∈C

reliability(r|q) (B.3)

116

where reliability is calculated as

ps =
#success+1

f ail +#success+2
(B.4)

In experiments we found that if there were few data points, and one of those points was
a success, then best reliability may not reflect the true reliability. To overcome this, we
determined that 5 successes must be observed. If there are not at least 5 successes for any
q, then brel =⊥. Any brel value for any DBN not equal to ⊥ is always greater than ⊥, and
brel =⊥ is never greater than any value.

B.2 Requirement of 30 Data Points

QLAP is an online learning algorithm that makes decisions as information comes in. It is
important that these decisions are based on a sufficient amount of information. To make the
following decisions, we require that there be 30 data points:

1. Section 4.1.2 learning new DBNs. We also require that Pr(soon(t,E2)|E1(t)) have
30 data points.

2. Section 4.4.1 learning new landmarks from models. Variable v and open interval q
must have at least 30 data (activations) for DBN r to be considered for a landmark.

3. Section 4.4.2 learning new landmarks from events. There must be at least 30 data
points in [lb,ub] of Pr(ṽt−1 ∈ [lb,ub]|E(t)).

117

Appendix C

Learning the DBN Window Size

Since different environments have different granulations of time, we want the algorithm to
be able to set k based on the environment. QLAP sets k to be the average amount of time it
takes for a motor command to make a noticeable change in the environment.

To find this noticeable change, QLAP notes the average time kr between each suc-
cessful transition between a motor variable and a direction of change variable. A transition
is successful if the consequent event becomes satisfied before the antecedent event stops
being satisfied. QLAP then keeps the same statistics that it keeps to learn DBNs, except
that kr is used for k for each potential DBN r.

Then at the periodic processing interval every 2000 timesteps, QLAP finds if any
DBN r can be learned using this current value of kr. If any can be learned, QLAP takes the
set of those DBNs that can be learned and finds the average value for kr, and the resulting
average is k.

118

Appendix D

Hillclimbing Algorithms

This appendix lists the pseudocode and discusses the details of the algorithms for improving
DBN models.

D.1 Adding Context Variables

The process of adding context variables is shown in Algorithm 3. For each DBN r, the
algorithm makes a copy r′ with an empty context. The algorithm then iteratively adds
context variables to r′ that improve r′. Finally, if r′ is an improvement over r, then the
context of r′ is used for r.

Valid context variables are magnitude variables or nominal variables. The variables
on the antecedent and consequent events cannot be part of the context. Interestingly, a
valid context variable must also have at least one landmark. It seems impossible that a
context variable with no landmarks could ever improve a DBN, but because statistics can
be recalculated from the last 200 times the antecedent event occurred, a variable with no
landmarks can be added as the second variable of a context if the first variable was more
predictive in the last 200 occurrences than before.

D.2 Learning Landmarks on DBNs

Algorithm 4 gives the pseudocode for learning landmarks on DBNs. To limit landmarks
during the search for landmarks over DBNs, we require that if variable v is in the antecedent
event of r, then v must be a motor variable. We also require that during a single execution
of Algorithm 4:

1. A DBN r can not be already improved upon by another new landmark.
2. A DBN r adds at most one landmark. If there is more than one landmark found for r,

the landmark with the highest weighted gain is added.

119

Algorithm 3 Update Context
Require: A DBN r = 〈C : X→x⇒ Y→y〉

1: let r′ be a copy of r but with an empty context, i.e. let r′ = 〈C′ : X→x⇒ Y→y〉 where
C′ = /0

2: while context of r′ is different from previous iteration do
3: if r′ is sufficiently reliable then
4: let r′′ = 〈C′∪v : X→x⇒Y→y〉 where v 6= X is the magnitude variable minimizing

H(r′′)
5: else
6: let r′′ = 〈C′∪v : X→x⇒Y→y〉where v 6= X is the magnitude variable maximizing

brel(r′′)
7: end if
8: if isModelImprovement(r′,r′′) then
9: C′←C′∪ v

10: end if
11: end while
12: if isModelImprovement(r,r′) then
13: C ← C′
14: end if

3. There can be only one new landmark per combination of variable v and open interval
q.

Algorithm 4 Finding landmarks on DBNs
1: let θIG = 0.30 be the required information gain
2: for each DBN r do
3: for each magnitude variable v do
4: for each open interval q ∈Q(v) do
5: find the best cutpoint c with gain G∗c
6: if G∗c > θIG and G∗c ·Pr(v = q) > θIG/2 then
7: create the candidate landmark v∗ and the potential new DBN r′

8: if isModelImprovement(r,r′) then
9: add v∗ as a new landmark

10: end if
11: end if
12: end for
13: end for
14: end for

120

D.3 Learning Landmarks to Predict Events

Algorithm 5 gives the pseudocode for learning landmarks to predict events. We require that
during an execution of Algorithm 5 that

1. Any found landmark within two buckets of an existing landmark is discarded.
2. Only one landmark per v and q combination be found. It takes the one with the

highest ∆.
3. Only one landmark per event E. It takes the one with the highest ∆.

Algorithm 5 Finding landmarks on events
1: let θE = 0.30 be the needed difference across buckets
2: for each event E on a direction of change variable do
3: for each motor or magnitude variable v do
4: find the bucket [lb,ub] that maximizes ∆ = Pr(ṽt−1 ∈ [lb,ub]|E(t))−Pr(ṽt−1 ∈

[lb,ub])
5: if ∆ > θE then
6: add v∗ = [lb,ub] as a new landmark
7: end if
8: end for
9: end for

121

Appendix E

Motor Babbling

When motor babbling, we want the agent to explore the space. To best explore the space, we
want to maintain the same motor command for more than one timestep. Additionally, we
want the values of motor variables to change at different times to avoid spurious correlations
for the model learner. Therefore, for motor babbling we treat each motor variable separately.
Each motor variable has a counter that counts the number of timesteps it will maintain its
randomly chosen value; this counter has a randomly chosen maximum between 0 and 40
timesteps. When the counter of some motor variable hits its maximum, a new random value
is chosen and a new counter maximum is chosen randomly.

When a single motor babbling command is issued during exploration, the command
continues until one of the motor variables’ counter reaches its maximum.

122

Appendix F

Performing Actions

Both algorithms either return a motor value or success or fail. An action is first called. Once
it is called, it is processed on subsequent timesteps until it is terminated.

Algorithm 6 Calling an Action
Require: action a(v,q), state s

1: if v is a motor variable then
2: let a.motor be a motor value within the continuous range covered by q
3: return a.motor
4: end if
5: let a.plan be or chosen as described in Chapter 6
6: if no plan found then
7: return fail
8: end if
9: let a.subaction be subaction a′ based on policy πr

10: call a′

11: if a′ fails then
12: return fail
13: else
14: a.motor← a′.motor
15: return a.motor
16: end if

123

Algorithm 7 Processing an Action
Require: action a(v,q), state s

1: if v is a motor variable then
2: return a.motor
3: else if exceeds resource constraints (βr from a.plan) then
4: return fail
5: else if action is completed (v = q) then
6: return success
7: else
8: if waiting for k timesteps then
9: if waiting period over then

10: let a.subaction be subaction a′ based on policy πr

11: call a′

12: else
13: return a.motor
14: end if
15: else
16: process a.subaction = a′

17: if subaction a′ returns fail or success then
18: if v is change variable and a.subaction to achieve antecedent of a.plan and

success then
19: begin waiting for k timesteps
20: return a.motor
21: else
22: let a.subaction be subaction a′ based on policy πr

23: call a′

24: end if
25: else
26: return a′.motor
27: end if
28: end if
29: if a′ fails then
30: return fail
31: else
32: a.motor← a′.motor
33: return a.motor
34: end if
35: end if

124

Appendix G

Decision Parameters

Table G.1 shows the decision parameters in QLAP.

Table G.1: Decision Parameters and Values in QLAP

Parameter Value Location Description
θSR 0.75 Sec. 4.2.2 required reliability for DBN to be sufficiently reliable
θpen 0.05 Sec. 4.1.2 penalty for rule improvement
θIG 0.30 Sec. 4.4.1 required information gain
θE 0.30 Sec. 4.4.2 required difference for entropy landmark

125

Appendix H

Tile Coding

There were 16 tilings and a memory size of 65,536. The motor variables ux and uy were
each divided into 10 equal-width bins, so that there were 20 actions with each action either
setting ux or uy to a nonzero value. The change variables were each divided into 3 bins:
(−∞,−0.05), [−0.05,0.05],(0.05,∞). The goal was represented with a discrete variable.
The remaining variables were treated as continuous. They were normalized to the range
[0,1] using the minimum and maximum values observed during a typical run of QLAP. The
generalization was 0.25, and the parameter values used were λ = 0.9, γ = 1.0, and α = 0.2.
Action selection was ε-greedy where ε = 0.05. The code for the implementation came from
PLASTK [Provost, 2008].

126

Bibliography

Ronald C. Arkin. Behavior-based Robotics. MIT Press, Cambridge, MA, USA, 1998.
ISBN 0262011654.

C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning. Artificial Intelli-
gence Review, 11(1/5):11–73, 1997a.

C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning for control. Artificial
Intelligence Review, 11(1/5):75–113, 1997b.

R.U. Ayres. Information, entropy, and progress: a new evolutionary paradigm. American
Institute of Physics, 1994.

B. Bakker and J. Schmidhuber. Hierarchical Reinforcement Learning Based on Subgoal
Discovery and Subpolicy Specialization. Proc. of the 8-th Conf. on Intelligent Au-
tonomous Systems, pages 438–445, 2004.

D. H. Ballard. Animate vision. Artificial Intelligence, 48:57–86, 1991.

A. Baranes, P.Y. Oudeyer, and F. INRIA. R-IAC: Robust Intrinsically Motivated Explo-
ration and Active Learning. IEEE Transactions on Autonomous Mental Development, 1
(3):155–169, 2009.

A.G. Barto and S. Mahadevan. Recent Advances in Hierarchical Reinforcement Learning.
Discrete Event Dynamic Systems, 13(4):341–379, 2003.

A.G. Barto, S. Singh, and N. Chentanez. Intrinsically motivated learning of hierarchical
collections of skills. ICDL, 2004.

M.A. Bedau. Artificial life: organization, adaptation and complexity from the bottom up.
Trends in cognitive sciences, 7(11):505–512, 2003.

A. Bonarini, A. Lazaric, and M. Restelli. Incremental Skill Acquisition for Self-Motivated
Learning Animats. Lecture Notes in Computer Science, 4095:357, 2006.

C. Boutilier, T. Dean, and S. Hanks. Decision theoretic planning: Structural assumptions
and computational leverage. Journal of Artificial Intelligence Research, 11(1):94, 1999.

127

R.I. Brafman and M. Tennenholtz. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning. The Journal of Machine Learning Research, 3:213–231,
2003.

R. A. Brooks. A robust layered control system for a mobile robot. IEEE Trans. on Robotics
and Automation, RA-2(1):14–23, 1986.

Harold Chaput. The Constructivist Learning Architecture: A Model of Cognitive Develop-
ment for Robust Autonomous Robots. PhD thesis, University of Texas at Austin, Depart-
ment of Computer Sciences, 2004. Also available as UT AI TR04-34.

L. B. Cohen, H. H. Chaput, and C. H. Cashon. A constructivist model of infant cognition.
Cognitive Development, 17:1323–1343, 2002a.

P. R. Cohen, M. S. Atkin, T. Oates, and C. R. Beal. Neo: Learning conceptual knowledge
by sensorimotor interaction with an environment. In Agents ’97, Marina del Rey, CA,
1997. ACM.

P. R. Cohen, T. Oates, C. R. Beal, and N. Adams. Contentful mental states for robot baby.
In Proc. 18th National Conf. on Artificial Intelligence (AAAI-2002). AAAI/MIT Press,
2002b.

Gautam Das, King-Ip Lin, Heikki Mannila, Gopal Renganathan, and Padhraic Smyth. Rule
discovery from time series. In Knowledge Discovery and Data Mining, pages 16–22,
1998.

T. Dean and K. Kanazawa. A model for reasoning about persistence and causation. Com-
putational Intelligence, 5(2):142–150, 1989.

A. J. DeCasper and A. Carstens. Contingencies of stimulation: Effects of learning and
emotions in neonates. Infant Behavior and Development, 4:19–35, 1981.

T. Degris, O. Sigaud, and P.H. Wuillemin. Learning the structure of factored Markov deci-
sion processes in reinforcement learning problems. In ICML, pages 257–264, 2006.

M.P. Deisenroth and C.E. Rasmussen. Efficient Reinforcement Learning for Motor Control.
In 10th International PhD Workshop on Systems and Control, 2009.

T.G. Dietterich. The MAXQ method for hierarchical reinforcement learning. ICML, 1998.

Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function
decomposition. Journal of Artificial Intelligence Research, 13:227–303, 2000.

B.L. Digney. Emergent hierarchical control structures: Learning reactive/hierarchical rela-
tionships in reinforcement environments. In From animals to animats 4: proceedings of
the Fourth International Conference on Simulation of Adaptive Behavior, page 363. The
MIT Press, 1996.

128

Gary L. Drescher. Made-Up Minds: A Constructivist Approach to Artificial Intelligence.
MIT Press, Cambridge, MA, 1991.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience Publi-
cation, 2000.

U.M. Fayyad and K.B. Irani. On the handling of continuous-valued attributes in decision
tree generation. Machine Learning, 8(1):87–102, 1992.

Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of continuousvalued
attributes for classification learning. In Proc. Int. Joint Conf. on Articial Intelligence,
volume 2, pages 1022–1027, 1993.

P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini. Learning about objects through
action-initial steps towards artificial cognition. In IEEE International Conference on
Robotics and Automation, 2003. Proceedings. ICRA’03, volume 3, 2003.

N. Friedman. Learning belief networks in the presence of missing values and hidden vari-
ables. In ML, pages 125–133. Citeseer, 1997.

N. Friedman. The Bayesian structural EM algorithm. In Proc. UAI, volume 98. Citeseer,
1998.

N. Friedman, K. Murphy, and S. Russell. Learning the structure of dynamic probabilis-
tic networks. In Proc. Fourteenth Conference on Uncertainty in Artificial Intelligence
(UAI98), pages 139–147. Citeseer, 1998.

Nir Friedman and Moises Goldszmidt. Discretizing continuous attributes while learning
bayesian networks. In Int. Conf. on Machine Learning, pages 157–165, 1996.

B. Fritzke. A growing neural gas network learns topologies. In G. Tesauro, D. S. Touretzky,
and T. K. Leen, editors, Advances in Neural Information Processing Systems 7, pages
625–632. MIT Press, 1995.

G. Gergely and J.S. Watson. Early socio-emotional development: Contingency perception
and the social-biofeedback model. Early social cognition: Understanding others in the
first months of life, pages 101–136, 1999.

M. Ghavamzadeh and S. Mahadevan. Continuous-time hierarchical reinforcement learn-
ing. In In Proceedings of the Eighteenth International Conference on Machine Learning,
2001.

EJ Gibson. Exploratory behavior in the development of perceiving, acting, and the acquiring
of knowledge. Annual review of psychology, 39(1):1–42, 1988.

129

K. Gold and B. Scassellati. Learning acceptable windows of contingency. Connection
Science, 18(2):217–228, 2006.

N.D. Goodman, V.K. Mansinghka, and J.B. Tenenbaum. Learning grounded causal models.
In Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society,
2007.

T.L. Griffiths, C. Kemp, and J.B. Tenenbaum. Bayesian models of cognition. Cambridge
handbook of computational cognitive modeling, pages 59–100, 2008.

M.B. Harris. Basic statistics for behavioral science research. Allyn & Bacon, 1995.

D. Heckerman. A Tutorial on Learning Bayesian Networks. Technical Report MSR-TR-95-
06, 1995.

B. Hengst. Discovering hierarchy in reinforcement learning with HEXQ. In Proceedings
of the Nineteenth International Conference on Machine Learning, pages 243–250, 2002.

T. Hester and P. Stone. Generalized model learning for reinforcement learning in factored
domains. In Proceedings of The 8th International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pages 717–724. International Foundation for Autonomous
Agents and Multiagent Systems, 2009.

W.F. Hill. Learning: a survey of psychological interpretations. HarperCollins Publishers,
1990.

X. Huang and J. Weng. Novelty and Reinforcement Learning in the Value System of De-
velopmental Robots. Proc. 2nd Inter. Workshop on Epigenetic Robotics, 2002.

Mark Johnson. The body in the mind: The bodily basis of meaning, imagination, and
reason. University of Chicago Press, Chicago, Illinois, USA, 1987.

Nicholas K. Jong and Peter Stone. Hierarchical model-based reinforcement learning: Rmax
+ MAXQ. In Proceedings of the Twenty-Fifth International Conference on Machine
Learning, July 2008.

N.K. Jong and P. Stone. State abstraction discovery from irrelevant state variables. Inter-
national Joint Conference on Artificial Intelligence, pages 752–757, 2005.

A. Jonsson and A. Barto. Causal graph based decomposition of factored MDPs. The Journal
of Machine Learning Research, 7:2259–2301, 2006.

A. Jonsson and A. Barto. Active learning of dynamic bayesian networks in markov deci-
sion processes. Lecture Notes in Artificial Intelligence: Abstraction, Reformulation, and
Approximation - SARA, pages 273–284, 2007.

130

A. Jonsson and A.G. Barto. Automated state abstraction for options using the U-tree algo-
rithm. Advances in neural information processing systems, pages 1054–1060, 2001.

M.I. Jordan and D.E. Rumelhart. Forward models: Supervised learning with a distal
teacher. Cognitive Science, 16:307–354, 1992.

E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for segmenting time
series. In Proceedings IEEE International Conference on Data Mining, 2001. ICDM
2001, pages 289–296, 2001.

Jon Klein. Breve: a 3d environment for the simulation of decentralized systems and artificial
life. In Proc. of the Int. Conf. on Artificial Life, 2003.

W.B. Knox and P. Stone. Combining Manual Feedback with Subsequent MDP Reward
Signals for Reinforcement Learning. 2010.

G. Konidaris and A.G. Barto. Skill discovery in continuous reinforcement learning domains
using skill chaining. In Advances in Neural Information Processing Systems 22, 2010.

J.J. Kuffner Jr and S.M. Lavalle. RRT-connect: An efficient approach to single-query path
planning. In Proc. IEEE Int. Conf. Robot. Autom.(ICRA, pages 995–1001, 2000.

Benjamin Kuipers. The spatial semantic hierarchy. Artificial Intelligence, 119(1-2):191–
233, 2000. ISSN 0004-3702.

Benjamin Kuipers. Qualitative Reasoning. The MIT Press, Cambridge, Massachusetts,
1994.

George Lakoff and Mark Johnson. Metaphors We Live By. University of Chicago Press,
Chicago, 1980.

D. B. Lenat and J. S. Brown. Why AM and EURISKO appear to work. Artificial Intelli-
gence, 23(3):269–294, 1984.

Jean Mandler. The Foundations of Mind, Origins of Conceptual Thought. Oxford University
Press, New York, New York, USA, 2004a. ISBN 0195172000.

Jean Mandler. A synopsis of the foundations of mind: Origins of conceptual thought.
Developmental Science, 7(5):499–505, 2004b.

MJ Marjanovic, B. Scassellati, and MM Williamson. Self-taught visually guided pointing
for a humanoid robot. In From Animals to Animats 4: Proc. Fourth Int l Conf. Simulation
of Adaptive Behavior, pages 35–44, 1996.

J. Marshall, D. Blank, and L. Meeden. An emergent framework for self-motivation in
developmental robotics. Proc. of the 3rd Int. Conf. on Development and Learning (ICDL
2004), 2004.

131

A.K. McCallum. Reinforcement learning with selective perception and hidden state. PhD
thesis, University of Rochester, 1996.

Amy McGovern and Andrew G. Barto. Automatic discovery of subgoals in reinforcement
learning using diverse density. In ICML, pages 361–368, 2001. URL citeseer.ist.
psu.edu/mcgovern01automatic.html.

G. Metta and P. Fitzpatrick. Early integration of vision and manipulation. Adaptive Behav-
ior, 11(2):109–128, 2003.

G. A. Miller, E. Galanter, and K. H. Pribram. Plans and the Structure of Behavior. Holt,
Rinehart and Winston, 1960.

Thomas Mitchell. Machine Learning. McGraw-Hill Education (ISE Editions), October
1997. ISBN 0071154671. URL http://www.amazon.co.uk/exec/obidos/ASIN/
0071154671/citeulike-21.

J. Modayil and B. Kuipers. Autonomous development of a grounded object ontology by a
learning robot. In Proc. 22nd Conf. on Artificial Intelligence (AAAI-2007), 2007.

A.W. Moore and C.G. Atkeson. The parti-game algorithm for variable resolution rein-
forcement learning in multidimensional state-spaces. Machine Learning, 21(3):199–233,
1995.

R. Munos and A. Moore. Variable resolution discretization for high-accuracy solutions of
optimal control problems. In International Joint Conference on Artificial Intelligence,
1999.

A. Needham, T. Barrett, and K. Peterman. A pick-me-up for infants’ exploratory skills:
Early simulated experiences reaching for objects using ‘sticky mittens’ enhances young
infants’ object exploration skills. Infant Behavior and Development, 25(3):279–295,
2002.

Nils J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Company, 1980.

S. Nolfi and D. Floreano. Synthesis of autonomous robots through evolution. Trends in
Cognitive Sciences, 6(1):31–37, 2002.

P.Y. Oudeyer, F. Kaplan, and V.V. Hafner. Intrinsic Motivation Systems for Autonomous
Mental Development. Evolutionary Computation, IEEE Transactions on, 11(2):265–286,
2007.

H.M. Pasula, L.S. Zettlemoyer, and L.P. Kaelbling. Learning symbolic models of stochastic
domains. Journal of Artificial Intelligence Research, 29:309–352, 2007.

132

citeseer.ist.psu.edu/mcgovern01automatic.html
citeseer.ist.psu.edu/mcgovern01automatic.html
http://www.amazon.co.uk/exec/obidos/ASIN/0071154671/citeulike-21
http://www.amazon.co.uk/exec/obidos/ASIN/0071154671/citeulike-21

V. Gregory Payne and Larry D. Isaacs. Human Motor Development: A Lifespan Approach.
McGraw-Hill Humanities/Social Sciences/Languages, 2007. ISBN 0073523623.

J. Pazis and M.G. Lagoudakis. Binary action search for learning continuous-action con-
trol policies. In Proceedings of the 26th Annual International Conference on Machine
Learning, pages 793–800. ACM, 2009.

Judea Pearl. Causality: Modeling, Reasoning, and Inference. Cambridge University Press,
Cambridge, 2000.

Jean Piaget. The Origins of Intelligence in Children. Norton, New York, 1952.

D. M. Pierce and B. J. Kuipers. Map learning with uninterpreted sensors and effectors.
Artificial Intelligence, 92:169–227, 1997.

B. Price and C. Boutilier. Accelerating reinforcement learning through implicit imitation.
Journal of Artificial Intelligence Research, 19(1):569–629, 2003.

J. Provost. sourceforge.net, 2008.

Jefferson Provost, Benjamin J. Kuipers, and Risto Miikkulainen. Self-organizing distinctive
state abstraction using options. In Proc. of the 7th Int. Conf. on Epigenetic Robotics,
volume 7, 2007.

M.L. Puterman. Markov Decision Problems. Wiley, New York, 1994.

J.R. Quinlan. C4. 5: programs for machine learning. Morgan Kaufmann, 1993.

C.E. Rasmussen. Gaussian processes in machine learning. Advanced Lectures on Machine
Learning, pages 63–71, 2006.

S.I. Reynolds. Adaptive resolution model-free reinforcement learning: Decision boundary
partitioning. In Proceedings of the Seventeenth International Conference on Machine
Learning, pages 783–790. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA,
2000.

A. Saxena, J. Driemeyer, J. Kearns, and A.Y. Ng. Robotic grasping of novel objects. Ad-
vances in neural information processing systems, 19:1209, 2007.

J. Schmidhuber. Curious model-building control systems. In Proc. Int. Joint Conf. on
Neural Networks, volume 2, pages 1458–1463, 1991.

M.D. Schmill. Learning the Structure of Activities for a Mobile Robot. PhD thesis, Univer-
sity of Massachusetts Amherst, 2002.

133

M.D. Schmill, M.T. Rosenstein, P.R. Cohen, and P. Utgoff. Learning what is relevant to the
effects of actions for a mobile robot. Proceedings of the Second International Conference
on Autonomous Agents, pages 247–253, 1998.

M.D. Schmill, T. Oates, and P.R. Cohen. Learning Planning Operators in Real-World,
Partially Observable Environments. In Proceedings Fifth International Conference on
Artificial Planning and Scheduling, pages 246–253, 2000.

C. E. Shannon. A mathematical theory of communication. Bell system technical journal,
27, 1948.

Wei-Min Shen. Autonomous Learning from the Environment. W. H. Freeman and Company,
1994.

Alexander A. Sherstov and Peter Stone. Function approximation via tile coding: Automat-
ing parameter choice. In J.-D. Zucker and I. Saitta, editors, SARA 2005, volume 3607 of
Lecture Notes in Artificial Intelligence, pages 194–205. Springer Verlag, Berlin, 2005.

O. Simsek and A.G. Barto. Using relative novelty to identify useful temporal abstractions
in reinforcement learning. ICML, pages 751–758, 2004.

O. Simsek, A. Wolfe, and A. Barto. Identifying useful subgoals in reinforcement learning
by local graph partitioning. ICML, pages 816–823, 2005.

J. Sinapov and A. Stoytchev. Learning and generalization of behavior-grounded tool affor-
dances. In Proc. of the Int. Conf. on Development and Learning, 2007.

S. Singh, A.G. Barto, and N. Chentanez. Intrinsically motivated reinforcement learning.
Advances in Neural Information Processing Systems (NIPS), 17:1281–1288, 2005.

B.F. Skinner. Cumulative record. Appleton-Century-Crofts, New York, 1961.

R. Smith. Open dynamics engine v 0.5 user guide. http://ode.org/ode-latest-userguide.pdf.,
2004.

J. Stober and B. Kuipers. From pixels to policies: A bootstrapping agent. In Proc. of the
Int. Conf. on Development and Learning, 2008.

Andrew Stout, George Konidaris, and Andrew Barto. Intrinsically motivated reinforcement
learning: A promising framework for developmental robot learning. In Proceedings of
AAAI Symposium on Developmental Robotics, 2005.

Alexander Stoytchev. Behavior-grounded representation of tool affordances. In Proceed-
ings of IEEE International Conference on Robotics and Automation (ICRA), pages 3071–
3076, 2005a.

134

Alexander Stoytchev. Toward learning the binding affordances of objects: A behavior-
grounded approach. In Proceedings of AAAI Symposium on Developmental Robotics,
2005b.

A.L. Strehl, C. Diuk, and M.L. Littman. Efficient structure learning in factored-state MDPs.
In AAAI, volume 22, page 645, 2007.

G. Sun and B. Scassellati. A fast and efficient model for learning to reach. International
Journal of Humanoid Robotics, 2(4):391–414, 2005.

R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT Press, Cambridge MA, 1998.

R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181–211,
1999.

W. Uther and M. Veloso. Adversarial reinforcement learning. Technical Report CMU-CS-
03-107, Carnegie Mellon University, 2003.

Christopher M. Vigorito and Andrew G. Barto. Autonomous hierarchical skill acquisition
in factored mdps. In Yale Workshop on Adaptive and Learning Systems, New Haven,
Connecticut, 2008.

S. Vijayakumar and S. Schaal. Locally weighted projection regression: An O(n) algorithm
for incremental real time learning in high dimensional space. In Proceedings of the
Seventeenth International Conference on Machine Learning (ICML 2000), volume 1,
pages 288–293, 2000.

S. Vijayakumar, A. D’souza, and S. Schaal. Incremental online learning in high dimensions.
Neural Computation, 17(12):2602–2634, 2005.

J. S. Watson. Contingency perception and misperception in infancy: Some potential impli-
cations for attachment. Bulletin of the Menninger Clinic, 65:296–320, 2001.

S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone. Evolving soccer keepaway players
through task decomposition. Machine Learning, 59(1):5–30, 2005.

Shimon Whiteson and Peter Stone. Evolutionary function approximation for reinforcement
learning. Journal of Machine Learning Research, 7:877–917, May 2006.

Luke S. Zettlemoyer, Hanna Pasula, and Leslie Pack Kaelbling. Learning planning rules
in noisy stochastic worlds. In Proc. 20nd Conf. on Artificial Intelligence (AAAI-2005),
pages 911–918, 2005.

135

Vita

Jonathan Mugan was born in Milwaukee, Wisconsin in 1973. He received his B.A. in

Psychology and his M.B.A. from Texas A&M University in 1995 and 1996, respectively.

He received his M.S. in Computer Science from the University of Texas at Dallas in 2004.

Since that time, he has been working on his doctorate at the University of Texas at Austin.

Permanent Address: 282 Clarence Court
Buda, TX 78610

This dissertation was typeset by the author.

136

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Autonomous Learning from the Environment
	Approaches to the problem
	Learning Rules
	Reinforcement Learning
	Forward and Backward Models
	Evolutionary Approach
	Explicitly Build in Domain Knowledge

	Principles of Our Approach
	Breaking up the Environment
	Developmental Learning
	Using Contingencies to Represent Knowledge

	The Qualitative Learner of Action and Perception, QLAP
	Contributions
	Contribution to Autonomous Mental Development
	Contributions to Reinforcement Learning

	Assumptions of QLAP
	Data Factoring Process
	Motor Conversion Process
	Related Assumptions

	Chapter Supporting Work
	Predictive Models
	Bayesian Networks
	Dynamic Bayesian Networks

	Information Theory
	Structuring Decision Problems: MDPs
	Reinforcement Learning
	Representing what is good: the value function
	Learning the Value Function with a Model
	Learning Through Experience
	Combining Models and Experience: Dyna

	Hierarchy

	Chapter Qualitative Representation
	Qualitative Representation
	Events
	Conclusion

	Chapter Learning Concise, Reliable Predictive Models
	Searching for Contingencies
	Contingency Definition
	The Pairwise Search

	Converting Contingencies to DBNs
	Adding a Context
	Notation of DBNs

	Adding Context Variables
	The Hillclimbing Measure
	The Hillclimbing Procedure

	Learning New Landmarks
	New Landmarks on Existing DBNs
	New Landmarks to Predict Events

	Magnitude DBN Models

	Chapter From Models to Actions and Plans
	Actions and Plans in QLAP
	Converting Change DBNs to Plans
	Creating the MDP from the DBN
	Learning a Policy for the MDP
	Mapping the Policy to an Option

	Converting Magnitude DBNs into Plans
	Defining the Action Space
	Defining the Transition Function

	Improving the State Space of Plans
	Tracking Statistics on Plans
	Adding New Variables to the State Space

	Performing Actions
	Calling and Processing Actions
	Terminating Actions

	Conclusion

	Chapter Exploration and Development
	Exploration
	Choosing a Learned Action to Practice
	Choosing the Best Plan to Perform an Action
	Choosing an Action within a Plan

	Developmental Restrictions
	When an Action becomes Sufficiently Reliable
	Limiting the Number of Plans
	Limiting when Change DBNs are Added

	Targeted Learning
	Self
	Conclusion

	Chapter Evaluation
	Core Evaluation Environment
	Experimental Setup
	Task Setup
	Goals of the Core Environment

	Tests for Statistical Significance
	Compare Undirected QLAP with Supervised Learning
	Experimental Environment
	Experimental Conditions
	Results

	QLAP enables transfer learning
	Experimental Environment
	Experimental Conditions
	Results

	QLAP can ignore extraneous variables
	Experimental Environment
	Experimental Conditions
	Results

	QLAP learns landmarks that are generally useful
	Experimental Environment
	Experimental Conditions
	Results

	QLAP: Limitations and Steps towards Tool Use
	Experimental Environment
	Experimental Conditions
	Results

	QLAP can learn to do unintuitive tasks
	Experimental Environment
	Experimental Conditions
	Results

	QLAP is not specific to a particular environment
	Experimental Environment
	Results

	Ablation Studies
	Experimental Conditions
	Results

	Chapter Discussion
	Examples of What QLAP Learns
	Landmarks Learned
	DBNs, Plans, and Actions Learned

	Dynamics, Hidden State, Probability, and Noise
	Noise from Dynamics
	Noise from Incomplete or Incorrect Models
	Noise from the Simulator
	QLAP could implement smoothing

	Theoretical Bounds
	Learning Contingencies
	Adding Context to DBNs
	Learning Landmarks on DBNs
	Learning Landmarks on Events
	MDP Planning

	Thresholds and Parameters
	Hierarchy

	Chapter Related Work
	Autonomous Learning
	Learning Models
	The Approach Taken by QLAP

	Learning a State Abstraction
	Discretizing the Space
	Finding the Right Variables

	Learning Actions
	Learning Hierarchy
	The MAXQ Value Function Decomposition
	Other Work on Learning Hierarchy

	Creating Reinforcement Learning Problems

	Chapter Future Work
	Navigating the Space of Environmental Configurations
	Social Learning
	Intrinsic Valuation of Events

	Reaching Developmental Milestones
	Creating New Representations
	Learning new variables by trying combinations
	Learning more complex representations

	Qualitative Model as Scaffolding
	Scaling up through Active Perception
	Conclusion

	Chapter Summary and Conclusion
	Appendix Nominal Variables
	Appendix Computing Probability
	Computing Probabilities for Best Reliability
	Requirement of 30 Data Points

	Appendix Learning the DBN Window Size
	Appendix Hillclimbing Algorithms
	Adding Context Variables
	Learning Landmarks on DBNs
	Learning Landmarks to Predict Events

	Appendix Motor Babbling
	Appendix Performing Actions
	Appendix Decision Parameters
	Appendix Tile Coding
	Bibliography
	Vita

