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Abstract—We present a method for entity resolution that
infers relationships between observed identities and uses those
relationships to aid in mapping identities to underlying entities.
We also introduce the idea of using graphlets for entity resolution.
Graphlets are collections of small graphs that can be used to
characterize the “role” of a node in a graph. The idea is that
graphlets can provide a richer set of features to characterize
identities. We validate our method on standard author datasets,
and we further evaluate our method using data collected from
Twitter. We find that inferred relationships and graphlets are
useful for entity resolution.

I. INTRODUCTION

As our data collection abilities expand, we increasingly
need the ability to bring multiple sources of information
together into a coherent whole. The focus of this work is
on entity resolution. Entity resolution is about determining
when multiple observable identities correspond to the same
underlying entity. Imagine a fraud ring devoted to stealing
government benefits that authorities break up and then re-
establishes itself under a new set of identities. How could we
find this same network of people again?

Entity resolution can also be useful when data comes from
different sources. We may have social media data of a set of
Twitter users and a set of Facebook users, and by observing
their behavior, we may want to know which Twitter users
correspond to which Facebook users. Or, we may have satellite
data tracking ships as well as AIS data tracking ships, and we
want to be able to link the same ships together.

Entity resolution has traditionally focused on attribute
matching. Attribute matching is an approach whereby one
examines the attributes (features) of two identities to see if they
match up. However, the events of the world are now increas-
ingly represented in digital form, allowing us to see not only
the subjects in which we are interested, but also the objects
with which those subjects interact. This means that in addition
to having access to the attributes of subjects, we can capture
their relationships to other objects, providing a richer view of
the environment. Fig. 1 shows an example of representing an
entity as a vector of attributes and relationships.

Graduating from an attribute-based representation to a
relational-based representation has three consequences for un-
derstanding data.
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Fig. 1: Example relational representation. The subject (entity),
shown as a stick figure, is represented as a set of attributes
ai,...,a; and three different kinds of relations. The subject
is related via relation R to [ objects (other entities), via relation
S to m objects, and via relation T to n objects.

1)  One must consider both the subject and the objects
to which it is related.

2)  That object can also be the subject in multiple other
relationships, so the initial subject is related to those
objects via second degree.

3) The objects that a subject is related to also have
attributes. For example, one could consider if the
majority of the Twitter followers of an individual are
interested in Chess.

Relational entity resolution has recently gained more at-
tention, however the majority of this work on relational entity
resolution assumes that one knows the relationships between
the entities. There have been multiple efforts [1], [2], [3]
in the social media domain that show how entities can be
resolved using lists of followers or friends. However, for
multiple applications in the real world, the picture is not so
neat. Fraudsters dont publish lists of their co-conspirators—
their conspirators must be inferred by observing their behavior.
Inferring these conspirators requires more than looking at
whom they communicate with, because that leads to data with
too much noise.

In this work, we present a method that resolves entities
where a list of conspirators is not given but must instead be
inferred from behavior. We build on previous work of tem-
poral group detection [4]. Temporal group detection analyzes
communications over time and finds groups of individuals
who consistently communicate. The first contribution of this
paper is to use the relationships found through temporal group
detection to help in performing entity resolution on relational
data where the relations must be inferred.



In addition to defining relationships by observing behavior,
we also want to use the behavior itself to help with entity
resolution. The second contribution of this paper is incorporat-
ing graphlets into entity resolution. Graphlets are small graph
fragments, and we use them to characterize the role that the
subject plays in its environment.

The structure of this paper is as follows. Our work infers
relationships from observed behavior, but we discuss related
work in entity resolution when the relationships are given. We
then provide the details of our method. Following that, we
provide an evaluation of our method and we conclude.

II. RELATED WORK

One of earliest efforts in relational entity resolution was
Markov Logic Networks (MLNs) [5]. An MLN is a graph-
based representation of a set of possible worlds. Nodes in
MLNs represent ground atoms. Edges between nodes are
present if they are related by a formula. Bhattacharya and
Getoor [1] use an agglomerative clustering algorithm that
considers attributes and relations among identities. A cluster is
a set of identities that correspond to the same entity. Narayanan
and Shmatikov [2] is very similar to Bhattacharya and Getoor
[1]. They begin with a set of “seed matches similar to the result
of the bootstrapping method of Bhattacharya and Getoor, and
they then iteratively add resolutions based on the number of
identically resolved neighbors between two nodes. Bartunov
et al. [6] model the problem using a conditional random field
and they solve it using quadratic optimization. Peled et al.
[3] uses a supervised machine learning approach. With some
entities labeled, they learn a model to determine if two entities
in two social networks are the same. They collected data
from Facebook and Xing (a network of business professionals
centered in Europe).

In addition to the introduction of graphlets for entity
resolution, our work differs from the work discussed here
because instead of being given relationships between identities,
we infer them by observing ongoing interactions.

III. OUR APPROACH

Our approach to entity resolution identifies relationships
between identities and the roles that identities play in their
social groups and then uses that information, along with the
attributes of the identities to resolve identities to their underly-
ing entities. Given a set of data that contains communications
between identities over a period of time, our approach searches
for the best mapping X of identities to entities that maximizes
the following objective function

Fit(X) = o - AttributeFit(X) + S - RelationshipFit(X)+
v - RoleFit(X) (1)
In this objective function,

e Artribute Fit captures that correctly resolved identities
often have the same characteristics.

e  Relationship Fit captures that correctly resolved iden-
tities often interact with the same entities.

e Role Fit captures that correctly resolved identities
often have the same role and behavior patterns.

Consider the example of this objective function in the domain
of social media. Attribute Fit captures that a Twitter profile
may have the same name as a Facebook profile, which makes
it more likely that they are the same person. Relationship Fit
captures that a Twitter user may interact with her best friend
on both Twitter and Facebook. Role Fit captures that a social
maven is likely to be popular on both Twitter and Facebook.

To further illustrate the point, consider the example of a
fraud group that is broken up by authorities but reforms under
a different set of entities, and we seek to use this objective
function to reidentify members. Attribute Fit captures that the
new identity of a particular fraudster may share characteristics
with his or her previous identity, such as zip code. Relationship
Fit captures that the fraudster will still likely interact with the
same entities as before, even though those entities may now
be represented with new identities. Role Fit captures that the
fraudster will still serve the same role as before, such as being
a leader or a liaison between groups of fraudsters.

The optimization function Fit(X) gives a score to a
mapping X of identities to entities. Since we are seeking to
maximize Fit(X), and each term is additive, we add a penalty
constant for each pair of identities mapped to an entity. We
also take the transitive closure of pairs. If identities A and B
are mapped to the same entity in a solution, and identities B
and C' are mapped to the same entity in the same solution,
we also map A to C. In this section, we will first discuss
how Fit(X) is implemented. We will then discuss how our
algorithm searches for the mapping X that maximizes Fit(X)
using a genetic algorithm.

A. Optimization Function Implementation

1) Attribute Fit: Attribute Fit measures how well the at-
tributes overlap for all resolved pairs of identities. For each
pair of resolved identities (z,y), Attribute Fit is computed
as the attribute-specific distance dist,(x,y) times an attribute-
specific weight ¢,, summed over all attributes a.

AttributeFit(x,y) = Z padisty(z,y) (2)

The function dist,(x,y) is specific to the attribute a. For
names, the simplest implementation would be to use the edit
distance, and other implementations are possible for other
attributes. The weights ¢, can be learned if one has labeled
training data using a perception or the Naive Bayes method.

2) Relationship Fit: We identify relationships in data using
Temporal Group Detection [4]. Temporal group detection
analyzes communications over time and finds groups of in-
dividuals who consistently communicate. Any identity = that
is found to be in the same group as another identity y, and
communicates directly with entity y at least once, is considered
to be a neighbor of identity y. In this case, we consider there
to be a relationship between identity x and identity y.

Relationship Fit measures how the resolved pairs of entities
fit together with their neighboring entities. An example is
shown in Fig. 2. The identities Bob T. and John M. are known
to communicate, and the identities Rob T. and Jon M. are
known to communicate. If the algorithm resolves Bob T. with
Rob T., then Relationship Fit makes it more likely that John
M. and Jon M. will be resolved.
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Fig. 2: Collective entity resolution. If one determines that Bob
T. and Rob T. are the same entity, and there are relationships
between Bob T. and John M. and between Rob T. and John
M., then one is more likely to recognize that Jon M. and John
M. are the same entity.
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(b) Graphlet orbits

C=1[4,5,0,1]
Y=[3,2,0,1]
z=1,0,2,0]

(a) Data graphs
G, (left) and G, (right)

(c) Computed orbit
vectors

Fig. 3: A small graphlets example using four orbits. (a) Shows
two graphs G; and G2. We wish to compare the similarity of
the roles of nodes in graphs (G; and Ga. (b) Four orbits that
serve as the features with which we will compare nodes from
graphs (G; with those of G5. (¢) The feature vectors for three
nodes using the four graphlet orbits.

For each pair of resolved identities (x,y), the relationship
fit is computed by looking at the resolved entities of the
identities of their neighbors, call these sets of entities N (z)
and N(y) respectively. To measure the entities in common
between x and y, we use the Jaccard distance, which is the
intersection divided by the union.

_ IN(2) N N(y)
[N (2) UN(y)]
Relationship Fit is collective. This means that the resolution of

the neighbors of an identity influences how that identity will
be resolved [1], as shown in Fig. 2.

RelationshipFit(x, y) (3

3) Role Fit: Role Fit measures how well the roles in their
respective modalities overlap for resolved identities. Consider
the fraud example in the introduction where the group is
disbanded and sets up under a new set of identities. The leader
of that group will still likely act as the leader, and in general,
the members will still fulfill the same roles. We use Role Fit to
help identify the members using the role they play. In contrast
with Relational Fit, we do not use group detection to determine
relationships. With Role Fit, we want to look at the behavior
of the identities in the wider environment, not just within its
group. To compute Role Fit, we look at the data graph, which
consists of identities as nodes and observed interactions (such
as communications) between identities as edges.

For each pair of resolved identities (x,y), the Role Fit is
computed by comparing their roles in the data graph using
graphlets. Graphlets can be used to compare the similarity of
relationships between two networks [7]. Each graphlet is a
small graph fragment that acts as a feature, roughly analogous
to how wavelet-like features are used in computer vision tasks,
such as face detection [8]. To characterize a particular node in a

graph, the algorithm sees how many times each feature can be
applied to that node. The graphlets often contain symmetries,
so we only want to count how many times that node can be
involved for each symmetry class, called an orbit. The result is
a vector for each node that characterizes the node’s structure.

Looking at Fig. 3, suppose we want to compare how similar
node C in graph G5 is compared to node Y in graph ;. Four
orbits are shown in Fig. 3(b), and using those four orbits, we
can characterize node C' with a vector of [4, 5, 0, 1]. The first
value ‘4’ is because C' takes the place of orbit 0 in G5 four
times: {{C,D},{C,E},{C, A},{C, B}}. The second value
‘5’ is because C takes the place of orbit o, in G five times:
{{A,C,D},{A,C, E},{B,C, D},{B,C, E},{D,C, E}}.
Note that {A, C, B} does not count because graphlets must
match on the edges that are not there as well as the edges
that are there. Because there is an edge {A, B}, the orbit oy
does not match {4, B,C}.

Once we have computed the orbit vectors for two nodes, we
can compare how similar those nodes are by looking at how
similar their vectors are using Euclidean distance or cosine
distance or a graphlet-specific distance metric. We see that
nodes C' and Y are similar, but when we compute the vector
for node Z, we see that is substantially different than the vector
for node C.

We use graphlets to compare pairs of nodes in Role Fit. The
graphlets we use contain up to four nodes, which consist of
15 orbits. We, therefore, can represent the role of each node
with a vector of size 15. These vectors are then compared
using the graphlet specific distance measure of [9] to compute
similarity. To compute the orbit vectors in a computationally
efficient manner, we use a combinatorial approach [10].

B. Genetic Algorithm Search Implementation

We search for an optimal solution to the optimization
function Fit(X) using a genetic algorithm. A genetic algorithm
implementation consists of a set of chromosomes, a fitness
function, a mutation operator, and a crossover operator. Each
chromosome encodes a possible solution. At each iteration
(generation), the mutation operator is applied to each chro-
mosome, possibly creating a new potential solution. Pairs of
chromosomes are also merged together into new potential so-
lutions using the crossover operation. The crossover operation
allows chromosomes to exchange information, and the goal of
crossover is to combine large blocks of bits that have evolved
independently, with the hope of speeding up search. The
optimization function Fit(X) serves as the fitness function,
and it is applied to individual chromosomes to determine which
ones are the fittest and should survive to the next generation.

In our implementation, each chromosome in the genetic
algorithm takes the form of a graph. The nodes and the graph
are identities, and each edge in each graph indicates a pair
of identities resolved to the same entity. We create an initial
population of chromosomes, and then at each generation we
randomly choose an evolutionary operator. Our evolutionary
operators are mutation type I, mutation type II, and crossover.

1) Initial Population Created with GRASP: The initial
population of chromosomes is created using a version of the
Greedy Randomized Search Procedure (GRASP) [11]. GRASP



works by randomly generating a candidate solution and then
performing a local search to see if it can be improved. This
process of generating candidate solutions and performing local
hillclimbing is performed multiple times, and the best solution
is taken.

In our implementation of GRASP, we initially compute
the sum of Attribute Fit and Role Fit! for each pair of
identities, and we set aside those pairs that exceed a minimum
threshold.? We then initialize each chromosome by randomly
resolving pairs of identities in that set aside collection, with
the probability of resolution being proportional to their sum
of Attribute Fit and Role Fit.

2) Mutation Operator Type I: Based on Relationship: This
type of mutation operation is based on the fact that entities
that share the same neighbor(s) are more likely to be resolved.
Based on resolved identities, we look for potential candidates
among their neighbors to be resolved.

Similar to how clusters of resolved entities are merged in
Bhattacharya and Getoor [1], we create clusters of identities
that are resolved to the same entity using transitive closure.
If identities z and y are resolved together, and identities y
and z are resolved together, then {z,y, z} form a cluster. The
set of clusters is denoted by C. Recall from the discussion
of Relationship Fit that two identities are considered to be
neighbors of one another if they are in the same temporal
group, as found by temporal group detection, and there has
been at least one direct communication observed between the
identities. A cluster ¢y € C is considered to be a neighbor of
a cluster ¢; € C if any identity in cluster ¢; is a neighbor an
identity in cluster cs.

For each pair of cluster neighbors (c1,c2) € C, we define
the similarity sim(,.,) between clusters as

SiM(cycy) = min AttributeFit(ny, no) 4)

(n1€c1,n2€c2)
If sim(c,¢,) is more than a threshold u, with probability of
SiM(¢,¢,)» We add edges to the graph representation of the
chromosome to merge those two clusters of identities into a
single entity.

3) Mutation Type II: Large Neighborhood Search: Mu-
tation of chromosomes is done using Large Neighborhood
Search (LNS). Neighborhood search entails evaluating all of
the possible solutions that are close (in the neighborhood)
to the current solution to see if any of those solutions are
better than the current one. Large Neighborhood Search entails
considering a very large set of possible neighbors where those
neighbors are too numerous to explicitly enumerate [12].

In our implementation, we make multiple changes to each
chromosome at each generation. For each change, we flip a
coin to determine if it will be an addition or a deletion. If it
is an addition, we choose an edge © = (z1,z2) to be added
(among the pairs of identities not currently resolved by an
edge) probabilistically based on the probability

1
p(z) = —AttributeFit(z1, z2) + RoleFit(z1,z2)  (5)
o

IRelationship Fit is not available since at this point we have not made
resolutions.

2With large sets of nodes, it becomes necessary to initially block them so
that only likely candidates are pair-wise compared.

where is a normalizing constant. For deletions, we perform
the analogous operation using

1
p(z) =1 — —AttributeFit(z1, z2) + RoleFit(z1,z2)  (6)
a

4) Crossover Preserves Common Edges in Parents: The
crossover operation intensifies the search around good solu-
tions. In our implementation, it preserves common edges in
parents while probabilistically adding edges (with probability
0.5) that reside in only one of the two chromosomes.

IV. EXPERIMENTAL RESULTS

We perform two sets of exploratory experiments. The first
set of experiments is on two standard datasets to establish that
our algorithm is on par with existing ones. These datasets are
bibliographic data, and it is not necessary to infer relationships.
The second set of experiments is on a Twitter dataset that
we collected where we look at the communications between
Twitter users to infer relationships. We use the inferred rela-
tionships for Relationship Fit and the raw communications for
Role Fit.

A. Standard Bibliographic Datasets

We used two datasets for this experiment. One is the Cite-
Seer dataset, which contains 1,504 machine learning papers
with 2,892 author references to 1,165 author entities. The other
is an arXiv dataset that contains 29,555 papers in high energy
physics domain with 58,515 author references to 9,200 authors.
For both datasets, the only attribute information available is
the author’s name. Each name contains the full last name and
either full first name or the initials of the first name. Each
author is an identity, and there is a relationship between author
identities if they co-authored a paper.

Because there is no concept of behavior in these datasets,
we only use Attribute Fit and Relationship Fit in these exper-
iments. The similarity of authors names is a weighted sum of
the similarities of their last names and first names. We use
scaled edit distance to measure the similarity of the authors
last names. For similarity measure of their first names, we take
into consideration that full first names of the authors are not
always available. When both full first names are available, we
use scaled edit distance. Otherwise, we compare their initials.
Two initials are determined to be similar only when one initial
sequence is contained in another (e.g., “c. h.” or “c. i are
sequences contained in “c. i. h.”, but “h. c.” is not contained
in “c. i. h”).

We perform the experiments with only Attribute Fit and
with both Attribute Fit and Relationship Fit. We present the
best result obtained in terms of F-measure in Table I. In this
table, we also include the best results in the literature from
Bhattacharya and Getoor [1]. Our results are comparable to
the state of the art. We obtained better results than the best
known result on the CiteSeer dataset, while our result on arXiv
dataset is the same as the best known result.

B. Collected Twitter Dataset

We use Twitter data to evaluate the ability of our algorithm
to perform entity resolution when the entities must be inferred.



TABLE I: F-Measure of Experiment Results on Author
Datasets

[ [ CiteSeer [ arXiv ]

Attribute Fit 0.982 0.980
Attribute Fit + Relationship Fit 0.996 0.985
Bhattacharya and Getoor (2007) 0.995 0.985

Twitter does provide lists of followers and friends, but many
real-world use cases such as fraud or intelligence analysis do
not come with lists of relationships, and these relationships
must be inferred. Fraud and classified data can be difficult
to use for scientific publications, so we use Twitter data but
ignore the friend and follower list to simulate this restriction.

We collected two sets of data tweets from Austin, Texas.
The first collection ran from October 31, 2013 to November
12, 2013. It contains 138,068 edges and 96,054 user nodes
derived from 175,756 tweets. The second dataset was collected
from November 13, 2013 until November 26, 2013. It contains
157,254 edges and 106,495 user nodes derived from 196,580
tweets. In the Twitter dataset, identities are Twitter users.
Instead of using follower lists, we look at communications
between Twitter users to infer relationships. We declare that
a communication between two Twitter identities has occurred
when one identity mentions another in a tweet. In Twitter,
user screen names begin with the ‘@’ symbol, so it is easy to
determine who is being mentioned. There can also be multiple
communications in a single tweet. For example, if @Henry
tweets: “I love getting ice cream with @Monica and @Rita!
We declare that one communication has taken place between
@Henry and @Monica and another communication has taken
place between @Henry and @Rita.

To focus our attention on well established networks among
vast twitter users, we ran Temporal Group Detection [4] and
found 22 groups in the first dataset and 25 groups in the
second dataset. We treat these two datasets as if they were
from different modalities and we seek to resolve members of
groups across the two datasets. We used screen names (also
known as user names, e.g., @Henry) as ground truth, but these
screen names were not given to the algorithm (nor were the
names, e.g., “Henry Johnson”). The attributes for each Twitter
identity consisted of

o a TF/IDF vector of everything that user tweeted during
that time period,

e the number of followers for that user,

e the number of people the person follows (Twitter calls
these friends),

e the number of tweets that person has tweeted,

e a string representation of the user’s location, inputted
by the user. In this dataset, most strings are some
derivation of “Austin, Texas.”

There were 196 members in the 22 groups in the first dataset
and 214 members in the groups in the second dataset, resulting
in 41,944 possible resolutions.

TABLE II: Best F-Measure Achieved in Each Condition over
a Range of Penalty Values on Twitter Dataset

Pairwise- Single- | Pairwise- Single

Group Group Comm Comm
Attribute only 0.853 0.873 0.853 0.852
Attribute Fit + Role Fit 0.853 0.893 0.853 0.873
Attribute Fit + Relationship Fit 0.877 0.893 0.877 0.893
Attribute + Role + Relationship | 0.877 0.893 0.877 0.893

1) Experimental Conditions: To evaluate the contribution
of Relationship Fit and Role Fit to solution quality, we perform
experiments under the following settings: Attribute Fit only;
Attribute Fit and Role Fit; Attribute Fit and Relationship fit;
and Attribute Fit, Relationship Fit, and Role Fit. These are
evaluated under four conditions stemming from two choices.

The first choice is how many times to run entity resolution.

e  Pairwise means to perform entity resolution multiple
times, once for each pair of groups. Recall that we
found 22 groups in the first dataset and 25 groups
in the second dataset. This condition runs our entity
resolution algorithm 22 x 25 = 550 times, once for
each pair of groups. For each pair, it counts the number
of true positives, false positives, true negatives, and
false negatives. After all runs, these are summed.

o  Single is the alternative to Pairwise. Single means to
run entity resolution once for all the groups. For the
Single condition, we run entity resolution once and
count the number of true positives, false positives, true
negatives, and false negatives.

The second choice is how to define Role Fit.

e (Comm means to implement Role Fit how it was de-
scribed in the body of the paper using graphlets, where
the graph is the underlying data graph consisting of
all communications.

e  Group is the alternative to Comm. It calculates Role
Fit based on how we define relationships, which
requires that edges in graphlets be communications
between two identities in the same group.

In total, there are four conditions: Pairwise-Comm,
Pairwise-Group, Single-Comm, Single-Group.

2) Experimental Results: The accuracy is usually well over
99% because there are so many true negatives. We therefore
look at the F-Measure. We ran each condition over a range of
penalty values, and Table II shows the best F-Measure achieved
in each condition. The precision-recall curves over the weight
of the penalty function are shown in Fig. 4.

Relationship Fit and Role Fit allow one to obtain better
results. The results indicate that graphlets (Role Fit) can be a
stand-in when relationships cannot be inferred. The precision
recall curves show a curious behavior of curving back in as
the penalty function loosens. This is presumably because the
loose penalty function causes the algorithm to make incorrect
resolutions early in the search process that prevent it from
finding correct resolutions later in the search process.



0.9 \{
\
0.8
0.7 = Attribute only
S 0.6
205 —— Attribute Fit + Role Fit
g 0.
T 0.4
0.3 Yl Attribute Fit +
' Relationship Fit
0.2 4
01 ; = Attribute +
. — Relationship + Role
0 T T T T )
0 0.2 0.4 0.6 0.8 1
Recall
(a) Pairwise-Group
1 ~
N
0.9
0.8
0.7 \ = Attribute only
S 0.6
245 —— Attribute Fit + Role Fit
S 0
T 0.4
0.3 Attribute Fit +
’ Relationship Fit
0.2
01 4 = Attribute +
: Relationship + Role
0 T T T T \
0 0.2 0.4 0.6 0.8 1

Recall

(c) Pairwise-Comm

Precision

Precision

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

e Attribute only

== Attribute Fit + Role Fit

Attribute Fit +

Relationship Fit

e Attribute +

Relationship + Role

Recall

(b) Single-Group

)|
A
(1]
I/ ]

e Attribute only

= Attribute Fit + Role Fit

Attribute Fit +
Relationship Fit

7

e Attribute +
Relationship + Role

0 0.2 0.4 0.6 0.8 1
Recall

(d) Single-Comm

Fig. 4: Precision-Recall curves in each condition over a range of penalty values on the Twitter dataset. These graphs offer a
different perspective on how Relationship Fit and Role Fit improve performance.

V. CONCLUSION

As our ability to collect data about the world has expanded,
entity resolution has become increasingly important for com-
bating fraud and for understanding complex environments with
multiple data sources. In this work, we focus on the task
of entity resolution in relational environments. In relational
environments, besides having attributes, entities relate to other
entities, and those relations can be used to help resolve entities.

Our exploratory experiments indicated that we can identify
relationships by observing behavior and that these relationships
can aid in entity resolution. Relationships are found using a
temporal group detection algorithm applied to observed com-
munications between identities. The experiments also provided
evidence that graphlets, small graphs that act as features to
describe nodes in a graph, are helpful for entity resolution.
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