TOP-DOWN ABSTRACTION LEARNING USING PREDICTION AS A SUPERVISORY SIGNAL

AAAI REPLEARN

Jonathan Mugan

July 15, 2013

Small distinctions can make a big difference

Imagine a rat in a Skinner box.

The rat can see a screen of images, and a dot in the lower-right corner determines if there will be a shock.

Bottom-up methods may not find this dot, but a top-down approach requires a supervisory signal.

Our supervisory signal comes from predictions.

Agenda

- The importance of top-down abstraction learning
- Autonomous development with top-down abstraction learning
- Application of autonomous development to cyber security
- Top-down abstraction learning for cyber security

Agenda

- The importance of top-down abstraction learning
- Autonomous development with top-down abstraction learning
- Application of autonomous development to cyber security
- Top-down abstraction learning for cyber security

The Qualitative Learner of Actions and Perception, QLAP

- 1. Begin with a very broad discretization of the environment.
- 2. Simultaneously learn a discretization and a set of predictive models of the environment.
- 3. Convert the models into plans, and form the plans into a set of hierarchical actions.
- 4. Use learned actions to explore the environment.

Feedback from model to discretization

Feedback from model to discretization

Convert Models to Plans

Q(s,a) $\pi(s) = \arg\max_{a} Q(s,a)$

Model

Model in the form of a dynamic Bayesian network

[Dean and Kanazawa, 1989]

Plan

Plan in the form of a Q-function

[Sutton and Barto, 1998]

The result is a useful abstract state representation and a hierarchy of effective higher-level actions.

Autonomous Learning

- Qualitative Representation
- Learning Predictive Models
- From Models to Actions and Plans
- Exploration

A qualitative representation encodes the values of variables relative to known landmarks [Kuipers, 1994].

Landmarks bridge the gap between the continuous and the discrete.

The variable value is either less than, greater than, or equal to that landmark.

Landmarks and Qualitative Values

Variable X with landmarks l_1 , l_2 has qualitative values

$Q(X) = \{(-\infty, l_1), l_1, (l_1, l_2), l_2, (l_2, +\infty)\}$

Initially, variables have no landmarks $Q(X) = \{(-\infty, +\infty)\}$

Initially, variables have no landmarks $Q(X) = \{(-\infty, +\infty)\}$

But for each variable *X* we define $X_t = X_t - X_{t-1}$

$$Q(\dot{X}) = \{(-\infty, 0), 0, (0, +\infty)\} = \{[-], [0], [+]\}$$

Advantages of a Qualitative Representation

- 1. Generalization: different real values map to the same qualitative value.
- 2. Focus: the learner can focus on important events.

QLAP uses a qualitative representation to model the continuous with special predicates

Consider $x \in Q(X) = \{(-\infty, l_1), l_1, (l_1, l_2), l_2, (l_2, +\infty)\}$

event(t, X, x)

QLAP uses a qualitative representation to model the continuous with special predicates

Consider $x \in Q(X) = \{(-\infty, l_1), l_1, (l_1, l_2), l_2, (l_2, +\infty)\}$

Example:

 $event(t, X, l_2)$

$$X_{t-1} \neq l_2$$
 and $X_t = l_2$
 $X_t \rightarrow l_2$

QLAP uses a qualitative representation to model the continuous with special predicates

Consider $x \in Q(X) = \{(-\infty, l_1), l_1, (l_1, l_2), l_2, (l_2, +\infty)\}$

Example:

$$event(t, X, l_2) \qquad X_{t-1} \neq l_2 \text{ and } X_t = l_2$$
$$X_t \rightarrow l_2$$

 $soon(t, X, x) \equiv \exists t' [t \le t' \le t+k \text{ and } event(t', X, x)]$

soon is a time window for an event to occur

Autonomous Learning

- Qualitative Representation
- Learning Predictive Models
- From Models to Actions and Plans
- Exploration

Predictive models are learned by identifying contingencies

A contingency is a pair of events that occur together in time. E.g., flip switch and light goes on.

Humans have an innate contingency detection module [Gergely and Watson, 1999].

Human infants can detect contingencies shortly after birth [DeCasper and Carstens, 1981].

Contingencies are:

- 1. Easy to learn; they only require looking at pairs of events.
- 2. A natural representation for planning.

Contingencies

Learn contingency $\langle E_1 \Rightarrow E_2 \rangle$ when

 E_2 is more likely to soon occur given that E_1 has occurred than otherwise

$$P(soon(E_2) | E_1) > P(soon(E_2))$$

We look at all pairs of events.

Each model is based on a contingency

Extracted contingences become dynamic Bayesian networks.

DBN with context variables

Context variables learned through marginal attribution [Drescher, 1991]

Conditional Probability Table

Top-down abstraction learning

(event(t, X, x))soon(t, Y, y)

Top-down abstraction learning event(t, X, x) soon(t, Y, y)

Environment responds with a "yes" or "no."

92	Yes	
93	Yes	
96	Yes	
100	Νο	
103	Νο	
105	Νο	

Environment responds with a "yes" or "no."

Fayyad and Irani [1993]

Entropy:

$$H(S) = -\sum_{j} P(S = s_{j}) \log_{2} P(S = s_{j})$$
$$I_{g} = H(S) - \frac{|S^{-}|}{|S|} H(S^{-}) - \frac{|S^{+}|}{|S|} H(S^{+})$$

Autonomous Learning

- Qualitative Representation
- Learning Predictive Models
- From Models to Actions and Plans
- Exploration

Two Types of Planning

Planning in QLAP combines symbolic and MDP planning

Symbolic Planning

Useful when only some states and variables are relevant.

QLAP uses symbolic planning to link models together.

 $d \leftarrow c \leftarrow b \leftarrow a$

MDP Planning

Useful when you need to model uncertainty.

QLAP uses reinforcement learning within models.

$$Q(s,a) \leftarrow \sum_{s'} P(s'|s,a) \left[R(s') + \gamma \max_{a'} Q(s',a') \right]$$

2СТ

There is a plan and action for each discrete motor value.

Motor actions directly set effectors.

Easy to build on top of existing pieces.

The end product of development.

Movie of learning structure

Autonomous Learning

- Qualitative Representation
- Learning Predictive Models
- From Models to Actions and Plans
- Exploration

Motor Babbling

Exploration at 50,000 timesteps

Learns abstractions:

- 1. The force needed to move the hand.
- 2. The limits of movement.
- Having its hand be the left or right of the block.

Exploration at 100,000 timesteps

Task: hit block off table

Task: grasp block

Agenda

- The importance of top-down abstraction learning
- Autonomous development with top-down abstraction learning
- Application of autonomous development to cyber security
- Top-down abstraction learning for cyber security

The extension of QLAP to cyber security is called Cy-QLAP

Generalized Cy-QLAP Algorithm

We expanded the QLAP developmental learning algorithm into a domain-general system protection algorithm.

Generalized Cy-QLAP Algorithm

- 1. human SME specifies a set of states and actions
- 2. human SME specifies a set of undesirable events that should be avoided
- 3. Cy-QLAP actively explores to learn the dynamics of the environment4. do forever:
 - a. Cy-QLAP monitors the system to see if it is possible to formulate a plan to bring about an undesirable event
 - b. If such a plan is found, Cy-QLAP takes a proportional action to break a link in that plan

Experimental results on autonomous exploration and learning

Generalized Cy-QLAP Algorithm

- 1. human SME specifies a set of states and actions
- 2. human SME specifies a set of undesirable events that should be avoided
- 3. perform Autonomous Exploration and Learning

4. do forever:

- a. activate the Threat Monitoring Module
- b. If such a plan is found, activate the Threat Intervention Module

Experimental results on autonomous exploration and learning

- Cy-QLAP learned the important dynamics of the environment
- Cy-QLAP learned how to
 - open a file remotely
 - exfiltrate a file
 - open and close a file share

Experimental results on protecting the system

Generalized Cy-QLAP Algorithm

- 1. human SME specifies a set of states and actions
- 2. human SME specifies a set of undesirable events that should be avoided
- 3. perform Autonomous Exploration and Learning
- 4. do forever:
 - a. activate the Threat Monitoring Module
 - b. If such a plan is found, activate the Threat Intervention Module

Experimental results on protecting the system

• Cy-QLAP:

- learned that if a file share was open, a sensitive file could be exfiltrated.
- also learned how to close file shares.
- Cy-QLAP therefore would close a file share as soon as it was opened.

Cy-QLAP learned to protect the system without being told how.

We know of no other cyber defense system that learns through exploration.

Agenda

- The importance of top-down abstraction learning
- Autonomous development with top-down abstraction learning
- Application of autonomous development to cyber security
- Top-down abstraction learning for cyber security

Abstractions allow the controller to see each aspect of the system at the right level of detail

high-level abstractions

low-level abstractions

Installed programs

System logs

Processes

System calls

Register values

Landmarks are an instance of an abstraction hierarchy

QLAP noted the real value of all variables each time a model was applied.

Abstracting the landmark process in QLAP to find level-of-detail abstractions

- Approach: define a set of abstraction hierarchies and note the value of the current and next level of each hierarchy each time a model is applied
 - Keep going down until the next level is not more reliable than the current level

Example: configuration file abstraction hierarchy

Thanks for listening. Any questions?

Jonathan Mugan jmugan@21ct.com www.jonathanmugan.com @jmugan

6011 West Courtyard Drive Building 5, Suite 300 Austin, TX 78730 Phone: 512.682.4700 Fax: 512.682.4701 www.21ct.com

