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Imagine a rat in a Skinner box. 

 

 

The rat can see a screen of images, 

and a dot in the lower-right corner 

determines if there will be a shock. 

 

 

 

 

Bottom-up methods may not find this dot, but a top-down approach requires 

a supervisory signal. 

 

Our supervisory signal comes from predictions. 
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1.Begin with a very broad discretization  
of the environment. 

2.Simultaneously learn a discretization and a set  
of predictive models of the environment. 

3.Convert the models into plans, and form the plans  
into a set of hierarchical actions. 

4.Use learned actions to explore the environment. 
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Model Plan 

Plan in the form of a 

Q-function  

Model in the form of  a  

dynamic Bayesian network 

[Sutton and Barto, 1998] 

( , )Q s a

( )

arg max ( , )
a

s

Q s a

 

[Dean and Kanazawa, 1989] 
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The result is a useful abstract state representation 

and a hierarchy of effective higher-level actions. 
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 

X

1 2 3 4 5

Landmarks bridge the gap between the continuous and the discrete. 

 

The variable value is either less than, greater than, or equal to that  

landmark. 

A qualitative representation encodes the values of  variables 

relative to known landmarks [Kuipers, 1994]. 
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Variable X with landmarks l1, l2 has qualitative values 

  1 1 1 2 2 2{( , ), , ( , ), , ( , )}X l l l l l l  Q
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  {( , )}X   Q

Initially, variables have no landmarks 
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  {( ,0),0, (0, )} {[ ],[0],[ ]}X      Q

  {( , )}X   Q

1t t tX X X  

Initially, variables have no landmarks 

But for each variable X we define 
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1. Generalization: different real values map to  

the same qualitative value. 

2. Focus: the learner can focus on important  

events. 
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( , , )event t X x

Consider  1 1 1 2 2 2( ) {( , ), , ( , ), , ( , )}x X l l l l l l   Q
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Xt−1  l2  and  Xt = l2 

Xt → l2 

2( , , )event t X l

Consider  1 1 1 2 2 2( ) {( , ), , ( , ), , ( , )}x X l l l l l l   Q

Example: 
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2( , , )event t X l

Consider  1 1 1 2 2 2( ) {( , ), , ( , ), , ( , )}x X l l l l l l   Q

( , , ) '[ ' and ( ', , )]soon t X x t t t t k event t X x    

soon is a time window for an event to occur 

Example: 

Xt−1  l2  and  Xt = l2 

Xt → l2 
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A contingency is a pair of events that occur together in 

time.  E.g., flip switch and light goes on. 

Humans have an innate contingency detection module  

[Gergely and Watson, 1999]. 
 

Human infants can detect contingencies shortly after birth  

[DeCasper and Carstens, 1981]. 

 

Contingencies are: 

1. Easy to learn; they only require looking at pairs of events. 

2. A natural representation for planning. 
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Learn contingency 
1 2E E when 

2 1 2( ( ) | ) ( ( ))P soon E E P soon E

E2 is more likely to soon occur  

  given that E1 has occurred than otherwise 

We look at all pairs of events. 
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( , , )soon t Y y( , , )event t X xantecedent 

event 

consequent event 

Extracted contingences become dynamic Bayesian networks. 
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1V

nV

( , , )soon t Y y( , , )event t X xantecedent 

event 

context 

variables 

V1 

V2 

Conditional Probability Table 

… 

Context variables learned through marginal attribution [Drescher, 1991] 

consequent event 
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( , , )soon t Y y( , , )event t X x
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( , , )soon t Y y( , , )event t X x

Environment responds with a “yes” or “no.” 

( )V t

92 Yes 

93 Yes 

96 Yes 

100 No 

103 No 

105 No 
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Fayyad and Irani [1993]  

( , , )soon t Y y( , , )event t X x

Environment responds with a “yes” or “no.” 

( )V t

92 Yes 

93 Yes 

96 Yes 

100 No 

103 No 

105 No 

( ) ( ) ( )g

S S
I H S H S H S

S S

 

   

2( ) ( ) log ( )j j

j

H S P S s P S s   Entropy: 

Information gain: 
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d c b a  

Symbolic Planning MDP Planning 

Useful when you need to model 

uncertainty. 

 

QLAP uses reinforcement learning 

within models. 

'
'

( , ) ( ' | , ) ( ') max ( ', ')
a

s

Q s a P s s a R s Q s a  
 

Useful when only some states and 

variables are relevant. 

 

QLAP uses symbolic planning to link 

models together. 

Planning in QLAP combines symbolic and MDP planning 
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Motor actions directly set effectors. 

There is a plan and action 

for each discrete motor value. 
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Easy to build on top of existing pieces. 
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The end product of development. 
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Learns abstractions:  

1. The force 

needed to move 

the hand. 

2. The limits of 

movement. 

3. Having its hand 

be the left or 

right of the block. 

the block.  
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QLAP Cy-QLAP 
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We expanded the QLAP developmental learning algorithm 

into a domain-general system protection algorithm. 

 

Generalized Cy-QLAP Algorithm  
 

1. human SME specifies a set of states and actions 

2. human SME specifies a set of undesirable events that should be avoided 

3. Cy-QLAP actively explores to learn the dynamics of the environment 

4. do forever: 

a. Cy-QLAP monitors the system to see if it is possible to formulate a 

plan to bring about an undesirable event 

b. If such a plan is found, Cy-QLAP takes a proportional action to break 

a link in that plan 
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Generalized Cy-QLAP Algorithm  
 

1. human SME specifies a set of states and actions 

2. human SME specifies a set of undesirable events that should be avoided 

3. perform Autonomous Exploration and Learning 

4. do forever: 

a. activate the Threat Monitoring Module 

b. If such a plan is found, activate the Threat Intervention Module 

 



 

• Cy-QLAP learned the important dynamics of the 

environment 

 

• Cy-QLAP learned how to  

– open a file remotely 

– exfiltrate a file 

– open and close a file share 
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Generalized Cy-QLAP Algorithm  
 

1. human SME specifies a set of states and actions 

2. human SME specifies a set of undesirable events that should be avoided 

3. perform Autonomous Exploration and Learning 

4. do forever: 

a. activate the Threat Monitoring Module 

b. If such a plan is found, activate the Threat Intervention Module 

 



• Cy-QLAP: 

– learned that if a file share was open, a sensitive file 

could be exfiltrated. 

– also learned how to close file shares. 

• Cy-QLAP therefore would close a file share as 

soon as it was opened. 

56 

Cy-QLAP learned to protect the system without being told how. 

 

We know of no other cyber defense system that learns through exploration. 
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high-level abstractions 

low-level abstractions 

Installed programs 

 

System logs 

 

Processes 

 

System calls 

 

Register values 
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  ,

 100,  ,100

 0,  100,0

 

X

1 2 3 4 5

X x 100 0 

QLAP noted the real value of all variables each time a model was applied. 

 



• Approach: define a set 
of abstraction 
hierarchies and note 
the value of the 
current and next level 
of each hierarchy 
each time a model is 
applied 
– Keep going down until 

the next level is not 
more reliable than the 
current level 
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directory 

file 

field 

value 

file 

field 

value 

Example: configuration file abstraction hierarchy 
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