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Abstract

We present a top-down approach for learning abstrac-
tions whereby a robot begins with a coarse representa-
tion of the world and incrementally finds new distinc-
tions as they enable the robot to better predict its en-
vironment. The approach has been implemented on a
simulated robot that learns new distinctions in the form
of variable discretizations through autonomous explo-
ration. This paper discusses how to generalize this ap-
proach to learning broader abstractions.

Introduction
Humans are great at ignoring irrelevant information and fo-
cusing on what is important. For instance, we know enough
about bananas to be able to buy and eat them, but most of us
don’t understand their molecular structure because we don’t
need to. Possibly because we can so effortlessly understand
our environment, we have been continually surprised at how
difficult it has been to build that ability into a robot.

One way to think about the problem is to begin with an
overwhelmingly complex sensory input and to search for
ways to make it simpler. Examples of this approach include
tracking blobs in computer vision, clustering, and principal
components analysis. These approaches are unsupervised
and bottom-up, but while such approaches can be a neces-
sary starting point, they are not enough. Robots often need
to be able to identify small distinctions that lead to big con-
sequences. Imagine being a rat in a Skinner box where you
could observe a screen full of complicated shapes. Imagine
further that a small dot in the lower right corner of the screen
determined whether a painful electric shock would come on
the left side of the cage or the right. Bottom-up methods
looking at the structure of the data without accounting for
the consequences might never find this important distinction.

This paper advocates a top-down approach to learning ab-
stractions. Instead of beginning with a fine-grained resolu-
tion of the world and learning abstractions to make it sim-
pler, we propose beginning with a coarse representation of
the world and making it finer by learning important distinc-
tions. In learning distinctions, we seek to balance a trade-off
between a representation of the world that is fine enough to
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be useful, but not so fine as to overwhelm computational re-
sources. A top-down approach requires a supervisory signal,
and our signal comes from trying to predict events known to
the robot. In the Skinner-box example, the rat would try to
predict when it would get shocked on the right side of the
box, and it would search the screen for a feature that would
help it to reliably make that prediction.

Abstraction Learning Using Predictive Models
Our top-down abstraction learning approach is shown in Al-
gorithm 1. The method begins with a coarse representation
consisting of a few features. Changes in feature values in the
environment gives rise to events, and therefore the algorithm
begins with a non-empty set of events E . The method seeks
to find regularities in the environment, and the algorithm
begins with a set of predictive models M. The algorithm
requires at least one event to begin the distinction learning
process, but the initial set of predictive models can be empty.

Algorithm 1 Abstraction Learning Algorithm
Require: a small, non-empty set of events E
Require: a (possibly empty) set of modelsM

1: while robot is still alive do
2: sense the environment and update statistics
3: for e ∈ E do
4: if new models M can be found that predict e then
5: M←M

⋃
M

6: end if
7: end for
8: for m ∈M do
9: if a new distinction d can be found that makes m

more deterministic then
10: convert d to set of events E
11: E ← E

⋃
E

12: end if
13: end for
14: execute some action
15: end while

The algorithm continually searches for new models that
predict its current set of events E . If one or more models is
found, they are added to the current set of modelsM. New
features come from finding new distinctions, and for each



Figure 1: Robot with an arm (blue), a block (yellow), and
two floating heads (blue). It perceives its environment as
46 variables (43 continuous and 3 Boolean). The robot au-
tonomously explores to learn actions and abstractions. For
example, in the process of learning to manipulate the block,
the robot learns what it means for the block to be on the
“left” side of its hand.

predictive model, m ∈ M, the algorithm searches for some
new distinction that makes m more deterministic. If such
a distinction is found, it is converted to a set of events E,
which is added to the total set of events E . We make the as-
sumption that distinctions learned to make predictive models
more reliable are broadly useful to the robot, and therefore
on the next iteration of the while loop the algorithm will
have new events that it can learn models to predict.

Note that the sets of models and events grow over time.
To contain model growth, one can remove models that do
not become sufficiently reliable through added distinctions
(Mugan 2010). One can also consider removing distinctions
(and therefore events) that no longer appear useful.

Abstraction Learning Using Dynamic
Bayesian Networks and Landmarks

Algorithm 1 was implemented on the simulated robot shown
in Figure 1 by Mugan and Kuipers (2012; 2010).1 Models
are represented using Dynamic Bayesian Networks (DBNs)
(Dean and Kanazawa 1989), and distinctions are represented
as discretizations of continuous variables.

Representing Distinctions
Mugan and Kuipers (2012; 2010) implement distinctions by
discretizing continuous variables using landmarks (Kuipers
1994). A landmark is a symbolic name for a point on a num-
ber line. Figure 2 shows a number line for a variable X
with two landmarks, which creates five distinct values for
X called qualitative values.

To begin with a small set of events, as required by Algo-
rithm 1, each continuous variable Ẋ that is a first derivative
of another variable X is given a landmark at 0. With this
initial level of abstraction, the robot cannot distinguish be-
tween the different values of X; it can only know that it is
between −∞ and +∞. But because Ẋ has a landmark at 0,

1A video explaining the implementation can be found at http:
//videolectures.net/aaai2010_mugan_qlap/.
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Figure 2: A number line for a variable X with two land-
marks. The two landmarks partition the infinite set of values
into five qualitative values. The current value of X = x is
shown in red. The large red arrow indicates that the value of
X is increasing.

the robot can know if the value of X is increasing, decreas-
ing, or remaining steady.

As the robot learns new landmarks, such as those shown in
Figure 2, the robot can make more distinctions between the
different qualitative values of variable X . Each new land-
mark creates two new events because the qualitative value
X = x can be reached from either above or below on the
number line.

Representing Models

Mugan and Kuipers (2012; 2010) implement predictive
models as dynamic Bayesian networks (DBNs). At the core
of each DBN is a contingency. A contingency is a pair of
events that occur together in time such that an antecedent
event is followed by a consequent event. An example would
be that flipping a light switch (the antecedent event) is soon
followed by the light going on (the consequent event). Con-
tingencies are a useful representation for predictive models.
They are easy to learn because they only require looking at
pairs of events, and they are a natural representation for plan-
ning because they indicate how events lead to other events.

Mugan and Kuipers (2012; 2010) create a model for each
pair of events (e1, e2) where the probability of event e2 oc-
curring soon after event e1 is higher than the probability of
event e2 occurring on its own. As the robot observes and
explores the environment, it identifies context variables for
each DBN model through marginal attribution (Drescher
1991) as shown in Figure 3. Marginal attribution works by
iteratively adding context variables as long as each new con-
text variable makes the DBN marginally more deterministic.

The context variables form a conditional probability ta-
ble (CPT) that gives the probability of the antecedent event
leading to the consequent event for each combination of val-
ues for the context variables. The robot seeks to learn de-
terministic models, and the level of determinism for each
model is measured by the highest probability of any value
in the CPT, as long as that value is less than 0.75. After that
value, the level of determinism is measured by the entropy of
the entire CPT. This dual method of measuring determinism
is used because experiments showed that it is initially best
to find some situation in which the contingency is reliably
achieved, and then it is useful to find a representation of the
environment that is predictable in all situations.
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Figure 3: Dynamic Bayesian Network (DBN). The contin-
gency that antecedent event A leads to the consequent event
B forms the core of the DBN. The conditional probability
table (CPT) gives the probability of the antecedent event
A bringing about the consequent event B for each possible
value of the context variables V1, . . . , Vn.

Learning New Distinctions
For a model m that predicts event A will lead to event B, the
supervisory signal comes from observing event A and then
noting if event B soon follows. We call this an application of
model m. For each application of model m, the environment
replies with True if event B follows event A, and with False
otherwise.

To learn new landmarks to implement line 9 of Algo-
rithm 1, the algorithm can note the real value of each vari-
able Vi each time model m is applied (line 2 of Algorithm 1).
The algorithm can then determine if there is a landmark that,
if created, would make the CPT of model m more determin-
istic. If so, the algorithm creates that landmark. The robot
will then have two new events that it can try to predict.

Generalizing Landmark Learning
Our approach to abstraction learning is to set up a space
over which the robot can search for new distinctions that
make predictive models more deterministic (line 9 of Algo-
rithm 1). This process was relatively straightforward for dis-
cretizing continuous variables as shown in Figure 4(a). We
can generalize this idea using an abstraction hierarchy. An
abstraction hierarchy is a domain-specific, user-defined hi-
erarchy with different levels of representation at each layer.

Algorithm 2 Update Abstraction Hierarchy Statistics
Require: a set of abstraction hierarchiesH
Require: a set of modelsM

1: for each predictive model m ∈M do
2: for each abstraction hierarchy h ∈ H do
3: note the value of each abstraction instance in h at

the level below the current level of abstraction each
time model m is applied

4: end for
5: end for

Figure 4(b) illustrates an abstraction hierarchy for a robot
agent with the task of learning to predict and control the dy-
namics of a computer operating system. For example, “file”
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Figure 4: Two abstraction hierarchies. (a) A hierarchy over
a continuous variable with two landmarks. Initially there are
no landmarks. Learning a landmark at 100 splits the state
space. The left state is split again when a another landmark
is learned at 0. (b) A domain-specific abstraction hierarchy
for configuration files in an operating system.

could be a variable that indicates if the hash of a specific con-
figuration file has been changed. This might be the level of
detail needed to predict an event that the robot cares about,
such as if a mission-critical program will function correctly.
By searching over this hierarchy, the robot may learn that it
does not need to know how exactly the file changed, only
that it was changed.

Algorithm 2 describes how the statistics for the abstrac-
tion hierarchies are maintained on line 2 in Algorithm 1.

Conclusion
Predictive models allow a robot to learn abstractions because
each model can serve as a self-supervised learning problem.
The abstractions learned using this top-down method will
not be uniform, and this is as it should be. We want the
robot to have deeper knowledge in areas that matter and less
knowledge in areas that do not. If the robot can perceive the
world at the right level of detail relative to its goals, the ap-
plicability of existing reasoning and planning methods can
be extended.
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