
Identifying Groups of Interest through Temporal
Analysis and Event Response Monitoring

Jonathan Mugan, Eric McDermid, Abbey McGrew, and Laura Hitt
21CT, Inc.

6011 W. Courtyard Drive
Building 5, Suite 300

Austin, TX 78730
http://www.21CT.com

Email: {jmugan,emcdermid,amcgrew,lhitt}@21ct.com

Abstract—We present a method for finding groups of interest
in large social networks. A temporal group detection algorithm
identifies tightly connected groups by analyzing communications
as they unfold over time. Since the number of groups found
through temporal group detection may be too large to allow for
manual analysis of their behavior, we also present an algorithm to
identify groups of interest within an existing set of groups. This
algorithm works by observing how groups react to key events
and finds groups of interest by noting which groups respond
anomalously. We demonstrate this approach on two social media
datasets collected from Twitter. The first dataset involves tweets
from Afghanistan when Afghanistan signed a letter of cooperation
with India. The second dataset involves tweets surrounding the
death of Steve Jobs. In both cases, our algorithm was able to
identify appropriate groups.

I. INTRODUCTION

We seek to understand and predict our world, but we often
must rely on indirect evidence because we cannot observe
the world directly. This indirect evidence often comes with
high volume, variety, and velocity [1], and we therefore must
develop frameworks to characterize these flows so that they
are amenable to human and automated analysis. In some
circumstances, it is helpful to describe the world in terms of
actors and the relationships between them. In particular, we
may want to identify groups of actors who exhibit particular
patterns of interactions over time.

With the ability to identify particular groups of actors, we
may be able to find groups of people who are likely to engage
in violent demonstrations or form a disruptive flash mob. We
may also wish to find threatening groups such as terrorists, or
alternatively, we may wish to find people who could be helped
by some particular health care service. Marketers may wish to
pinpoint groups of people who would be interested in their
product, instead of having to annoy masses of consumers who
are not interested in hearing their message.

Social media can be a useful tool for finding groups of
interest. It not only serves as a real-time window on the events,
thoughts, and communications of distant areas [2], but also
serves as an abundant, publicly available proxy for sensitive
operational data. The data is live and is collected as it is
happening. The results obtained from any analysis may be
noisy, but they give the analyst a sense of how information
processing algorithms will work on real, operational data.

The contribution of this paper is the presentation of a
pair of algorithms that, when put together, are capable of
finding groups with properties of interest in large datasets. We
evaluated these algorithms on social media data and found that
groups of interest could be identified. We first discuss how
temporal group detection finds groups whose communications
are relatively stable over time. We then discuss how particular
groups of interest can be identified within the set of groups that
were found through temporal group detection. This process
works by observing how each group responds to an event and
identifying groups of interest by noting which ones respond
anomalously. We conclude with experimental results.

II. RELATED WORK

Our work lies at the intersection of social network analysis
[3], static community detection, and temporal community
evolution. There has been enormous interest in the study
of these topics over the last decade, hence, we present a
brief overview with representative references of each, paying
particular attention to the work that is most related to our own.

A. Static community detection

The goal of static community detection algorithms is to
discover unusually dense subgraphs of a given graph. Tang and
Liu [4] have categorized the various community detection into
four different types of approaches: node-centric, group-centric,
network-centric, and heirarchy-centric. For our purposes, it
suffices to review the first three of these. In node-centric
community detection, a set of nodes is a community if every
node satisfies a given set of properties (see, e.g., [5, Chapter
7] for an overview). Many of these problems can be solved
through combinatorial techniques, although often at very high
cost, due to their computational complexity.

Group-centric community detection considers a set of
nodes to be a community if the set as a whole satisfies a
given property. Examples include density-based and quasi-
clique communities [6]. Under this community definition, an
individual node may be sparsely connected with the rest of the
community, but is included because the community collectively
satisfies the given criteria.

The majority of research has been done in the area of
network-centric community detection. The state-of-the-art ap-
proaches are based on latent space models, in which the

nodes (edges) of a network are mapped into a low-dimensional
Euclidean distance space (using, e.g., matrix factorization)
such that the proximity between nodes (edges) based on
network connectivity is preserved. The nodes (edges) can
then be clustered in the low-dimensional space using straight-
forward clustering schemes such as k-means. Representative
approaches include [7], [8], [9]. Borg and Groenen [10] also
provide a broad overview of these techniques. More recent
work has extended the latent-space models to consider not
only the structure of the underlying graph, but also additional
information such as edge and node content (see e.g., [11],
[12]).

B. Temporal community evolution

While static community detection aims to find meaningful
dense structures in static graphs, temporal community evolution
(also called dynamic community evolution) additionally aims
to discover the emergence of a community, and quantify its
growth, decay, or combination with other temporal commu-
nities. These insights are lost – or at best misrepresented –
when, instead, the nodes and edges of the social network are
aggregated into a static graph.

A common framework for temporal community detection
and evolution is given by Asur et al [13]. First, a series of
“snapshots” g1, . . ., gk of the input graph are computed. Next,
a static community detection algorithm is applied, resulting
in a set of communities ci1, . . ., ciz for each snapshot gi. The
appropriate communities are then linked across each gi. Such a
framework has been used, for example, to study a community
over time to detect different events or observe the reaction of
a group to a known event [14], [15], [16], [13].

A different but related topic to temporal community evo-
lution is that of graph anomaly detection. These approaches
typically either consider the evolution of a single graph over
time or seek to identify anomalous subgraphs with in a very
large graph. We refer the reader to the tutorial of Akoglu and
Faloutsos [17] for a thorough overview of such techniques.

III. TEMPORAL GROUP DETECTION

In this section, we present the Temporal Group Detection
algorithm.1 Temporal Group Detection takes a directed graph
with time stamps associated with the edges and returns the set
of densely connected groups of nodes that persist through a
sufficiently significant period of time. We begin this section
with a few definitions and notation that we require in order to
describe the algorithm; however, for space reasons and ease of
presentation, we are occasionally informal in our description.

A directed temporal graph D = (V,E, T) is a directed
graph with a node set V (a set of people) and an edge set E
(a set of communications between them). Associated with each
edge e ∈ E is a time label t(e); the set T is the union of these
time labels. Given a directed temporal graph, a temporal series
of directed graphs DS = (D0, D1, . . . , Dz) naturally arises
by partitioning the time stamps of the edges of D into time
intervals. A temporal group is, informally, a subset of vertices
V ′ ⊆ V such that V ′ is a sufficiently densely connected cluster

1This algorithm, implemented as DSP 1.12, has not been previously
presented in the scientific literature. We reference the user manual [18].

throughout a sufficient subsequence of a temporal series of
directed graphs DS .

The Temporal Group Detection algorithm (TGD) is pre-
sented in Algorithm 1. It takes parameters D and S, where D
= (V,E, T) is a directed temporal graph and S = {(s0, t0),
(s1, t1),. . .,(sz, tz)} is a set of time intervals. The goal of the
TGD is to find the temporal groups in the temporal series of
directed graphs implied by D and S. The process consists of
the three steps described below.

A. Step 1: Detect Static Groups

Given D and S = {(s0, t0), (s1, t1),. . .,(sz, tz)}, Step 1 of
the TGD partitions E into z subsets E1, E2, . . . , Ez , where Ei

is the set of edges ej with si ≤ t(ej) ≤ ti. The series of graphs
DS is computed by setting the ith graph in the sequence to
be the graph induced by the edges Ei. Next, a group detection
algorithm is used to find the densely connected subgraphs
within each Di ∈ DS . A number of possible algorithms are
available in the literature (see e.g., [19]); we used the “Best
Friends” algorithm of Moy [20]. The output of this step is the
union Q of all groups detected over each Di.

Algorithm 1 Temporal Group Detection
Require: a directed temporal graph D = (V,E, T).
Require: a set of time intervals S = {(s0, t0),

(s1, t1),. . .,(sz, tz)}.
1: *** Step 1: Detect Static Groups ***
2: compute the temporal series of directed graphs DS

3: for each Di ∈ DS do
4: compute the set Qi of (static) groups in Di.
5: end for
6: *** Step 2: Match Groups Across Time Intervals ***
7: initialize an auxiliary graph H to contain one node for

each group in Q
8: for each pair of nodes (qi, qj) where qi appears in an

earlier time interval that qj do
9: if sufficient overlap between members of qi and qj then

10: make (qi, qj) a directed edge of H
11: end if
12: end for
13: *** Step 3: Merge and Refine Matched Groups ***
14: compute the partition of paths p1, . . . , pk of H
15: merge the set of groups along each pi, resulting in a new

set of groups G
16: discard the unstable groups from G
17: while some pair of groups (qi, qj) in G is sufficiently

similar do
18: merge qi and qj into one group qk
19: remove qi and qj from G and insert qk into G
20: end while
21: return G

B. Step 2: Match Groups Across Time Intervals

Having obtained a set of groups Q, Step 2 of the TGD
attempts to identify the evolution of a group over DS . To
accomplish this, a directed acyclic auxiliary graph H = (Q,A)
is computed, where Q is the set of groups discovered in
Step 1, and A is the set of all directed edges (qi, qj) where
group qi appears in an earlier time interval than qj , and the

Communications between
group members CB,G,E

@Bob: how are you @Carol?

@Alice: shout out to @Bob

@Bob: having lunch with @Juan

…

@Juan: see you later @Alice!

@Bob

@Alice @Juan

@Carol

λ6

λ5

λ1

λ3

λ4 λ2

Weighted communication
graph WB,G,E

@Bob

@Alice @Juan

@Carol @Bob

@Alice @Juan

@Carol

@Bob

@Alice @Juan

@Carol

Graph samples

WB,G,E,1 WB,G,E,2

WB,G,E,3

SNA metric vectors on
graph samples MB,G,E

MB,G,E,1 = [0.42, 0.78, …, 0.90]

MB,G,E,2 = [0.57, 0.23, …, 0.11]
MB,G,E,3 = [0.82, 0.66, …, 0.04]

(a) (b)

(c)

(d)
4

1

2

1 2

3

1

1 1 4

Fig. 1. (a) A set of communications before event E between a group of four
Twitter users: @Bob, @Carol, @Alice, and @Juan. (b) The weighted commu-
nication graph WB,G,E , where λi represents the strength of communication
ties between two Twitter users. (Shown as undirected for ease of presentation.)
(c) Sample graphs taken from the weighted communication graph with edge i
appearing according to the Poisson distribution with parameter λi. (Shown as
undirected for ease of presentation.) (d) A set of vectors MB,G,E of SNA
metric values computed for each sample graph.

node set of qi and qj is sufficiently similar according to user-
specified parameters. Intuitively, the paths of this graph trace
the evolution of underlying stable groups through sequences of
observed groups in DS ; a group is stable if there is sufficient
overlap of members between time slices. The output of this
step is the auxiliary graph H .

C. Step 3: Merge and Refine Matched Groups

The final step of the TDG is to produce a final set of
groups G that, intuitively, are considered to have been suffi-
ciently present throughout the period of time of the analysis.
In particular, the algorithm partitions H into disjoint paths,
p1, . . . , pk. The set of groups along each path pi are merged
into a single group, resulting in a new set of groups G. Each
group in G is then considered in turn, and the groups that
are not considered to be “stable” enough are discarded. Next,
pairs of groups are continually merged until no two groups are
sufficiently similar. The set of groups G that remain at the end
of this process are returned by the TDG algorithm.

IV. MONITORING RESPONSES OF GROUPS TO EVENTS

Within the set of groups found through Temporal Group
Detection, we want to find particular groups of interest by
identifying which groups respond to certain classes of events.
For each group, we have a set of communications between
the members. We convert those communications into a rep-
resentation of group behavior that we then use to measure if
that behavior changes in response to an event. We present two
different methods for measuring how anomalous a behavior
change is in response to an event. The first method is Behavior
Plotting. As the name suggests, Behavior Plotting plots the

Algorithm 2 Compute Group Behavior Representation
Require: A set of groups G found through Temporal Group

Detection (Section III).
Require: A set of communications C between the members

of the groups G ∈ G.
Require: An event E

1: for each G ∈ G do
2: Let CB,G,E ⊆ C be the set of communications for group

G that occur before event E, and let CA,G,E ⊆ C be
the set of communications for group G that occur after
event E.

3: Create weighted communication graph WB,G,E to have
the nodes of group G and edges between each pair
of nodes. Give each edge a weight λ reflecting the
frequency of communications in CB,G,E as described in
Section IV-A1. Create weighted communication graph
GA,G,E analogously.

4: end for
5: for i in range 100 do
6: Let WB,G,E,i be a sample of WB,G,E acquired by

sampling the edges of WB,G,E using the Poisson dis-
tribution with each edge weight λ as a parameter.

7: Compute a vector MB,G,E,i of social network analysis
metrics over WB,G,E,i as described in Section IV-A2.

8: Add MB,G,E,i to the set MB,G,E

9: Compute MA,G,E,i analogously and add it to the set
MA,G,E

10: end for
11: return MB,G,E and MA,G,E

change in behavior of a group in response to an event. Behavior
Plotting provides visual information to the analyst, but it is
somewhat subjective in its interpretation. The second method
for measuring how anomalous the behavior of a group is in
response to an event is called Anomaly Ranking. As the name
again implies, Anomaly Ranking ranks the groups according
to degree of anomalous behavior. Anomaly Ranking lacks
the visual information of Behavior Plotting, but it provides
objective results.

A. Representing Group Behavior

We represent group behavior by creating a model of the
group dynamics. This model is in the form of a graph called
a weighted communication graph (Section IV-A1). We then
sample graphs from the weighted communication graph and
compute SNA metrics on those sampled graphs to get a vector
of SNA metrics (Section IV-A2) for each sample.

To compute the behavior change of group G to event E,
we compute the set of SNA metric vectors MB,G,E for the
communications before event E, and we compute the set of
SNA metric vectors MA,G,E after event E. An example for
the process for computing the group behavior for a group G
before an event E is shown in Figure 1 and the algorithm
is shown in Algorithm 2, and further additional details are
provided in Section IV-A1 and Section IV-A2.

1) Computing the Weighted Communication Graph: The
weighted communication graph for a group is a directed graph
that represents how often the members of the group commu-
nicate with each other each week. To compute the weighted

communication graph, we assign weights to the edges between
the pairs of nodes in group G ∈ G equal to the average
frequency of communications between those nodes as they
appear in the time interval duration (e.g. Bob talks to Carol
4.2 times per week). For each edge, the weight is used as the λ
parameter of a Poisson random variable. These λ parameters
are then used to create sample communication graphs from
this weighted communication graph. These samples are created
so that the frequency of communications has proportional
influence in the SNA metric space.

2) Computing Social Network Analysis Metrics: The be-
havior of a group is characterized using a vector consisting of
the following twelve SNA metrics. These metrics are computed
over the largest connected component of the graph. If a metric
requires an undirected graph, the undirected graph is computed
from the directed graph by summing the edge values.

Diameter: the maximum distance between any two nodes in
the undirected version of the graph.

Radius: the minimum eccentricity of all nodes in the undi-
rected version of the graph. The eccentricity of a node is
the maximum distance from that node to all other nodes
in the graph.

Characteristic path length: the average of the lengths of all
shortest paths between any two pairs of nodes (excluding
self-pairs) in the undirected version of the graph.

Algebraic connectivity: the second smallest eigenvalue of the
Laplacian matrix for the undirected version of the graph.
The Laplacian matrix of a graph is the diagonal matrix
of the node degrees minus the adjacency matrix.

Average betweenness: the average of the betweenness cen-
trality values for each node in the graph. Betweenness
centrality is defined as the fraction of the shortest paths
between all node pairs that pass through that node, in the
undirected version of the graph.

Average closeness: the average of the closeness centrality
values for each node in the graph. Closeness centrality
for a node is defined as the inverse of the average
shortest distance from that node to all other nodes, in
the undirected version of the graph.

Weighted average closeness: the average of the closeness
centrality values for each node in the weighted version
of the graph. Closeness centrality for a node is defined
as the inverse of the average shortest distance from that
node to all other nodes, in the undirected version of the
graph.

Average eigenvector centrality: the average eigenvector
value for the largest eigenvalue in the undirected,
unweighted graph adjacency matrix.

Weighted average eigenvector centrality: the average
eigenvector value for the largest eigenvalue in the
undirected, weighted graph adjacency matrix.

Average undirected volume: the average sum of the edge
weights for all undirected edges associated with each
node.

Average out percent degree: the average of the fraction of
directed edges in the graph that go through each vertex
that are an ‘outgoing’ edge.

Percent active members: the percentage of members with at
least one edge.

B. Finding Groups of Interest through Behavior Plotting

To identify groups of interest, we determine which groups
have anomalous changes in their behavior vector [21]. These
anomalies can be seen visually by plotting their behavior
change, where for any group, the response to the event is
represented by a line from the behavior plotted before the
event to the behavior plotted after the event. Since plots are
easiest to visualize in two-dimensional space, we use Principal
Components Analysis (PCA) [22] to perform dimensionality
reduction on the behavior vectors, and we plot the behaviors
using the first two principal components. This process is shown
in Algorithm 3.

Algorithm 3 Behavior Plotting
Require: A set of groups G found through Temporal Group

Detection (Section III).
Require: An event E
Require: Sets of vectors MB,G,E and MA,G,E representing

the behavior for each group G both before and after,
respectively, for event E.

1: Perform PCA over the set
⋃

G∈GMB,G,E ∪MA,G,E

2: Plot the centroids of MB,G,E for each G ∈ G in the
space created by the top two eigenvectors from the PCA
calculation. These points will be the tails (beginnings) of
the arrows.

3: Plot the centroids of MA,G,E for each G ∈ G in the
space created by the top two eigenvectors from the PCA
calculation. These will be the heads (endpoints) of the
arrows.

C. Finding Groups of Interest through Anomaly Ranking

We also identify groups of interest by anomaly ranking
[21]. A group signature is computed for each group by
subtracting the average of the groups’ SNA metric samples
before the event from the average of the groups’ SNA metric
samples after the event. Then a score is computed as the
highest magnitude of the signature plotted in the PCA space
of those remaining, divided by the eigenvector.

Anomalies are found by comparing each group’s signature
score with all of the others. Once the most anomalous network
is found, it is removed from consideration, and the algorithm
looks for the next most anomalous network. This process is
shown in Algorithm 4.

V. EXPERIMENTAL PROCEDURE AND RESULTS

Our hypothesis is that if a group has a property x of
interest, then it will respond to an event with a related property
x′ differently than those groups who do not share property
x. Evaluating hypotheses in Big Data domains such as social
media can be difficult because it can be impractical to manually
create ground-truth labels. Instead, one can consider alternative
sources of information and evaluate if these disparate sources
lead to the same conclusion. We use this approach and present
the results of two exploratory experiments.

Our data set consists of communications within Twitter
data. Twitter is an online social network where users can
post messages of 140 characters for the world to see. We
focus on Twitter data because of the public nature of the

Algorithm 4 Anomaly Ranking
Require: A set of groups G found through Temporal Group

Detection (Section III).
Require: An event E
Require: Sets of vectors MB,G,E and MA,G,E representing

the behavior for each group G both before and after,
respectively, for event E.

1: let SE = {}
2: for each G ∈ G do
3: Let SG,E = avg(MA,G,E)− avg(MA,G,E)
4: Add SG,E to SE to
5: end for
6: for |G| − 3 times do
7: Compute PCA on SE

8: Select SG,E with highest score(SG,E , SE) where
score(SG,E , SE) is the magnitude of the projection of
SG,E in the PCA space of SE , divided by the eigenvalue
of SG,E .

9: Add G to anomalous queue
10: remove SG,E from SE

11: end for
12: return anomalous queue

communications and because of the size of the Twitter social
network. We say that a communication between two people
has occurred when one person mentions another in a tweet. In
Twitter, user names begin with the ‘@’ symbol, so it is easy to
determine who is being mentioned. There can also be multiple
communications in a single tweet. E.g., if @Alice tweets: “I
can’t wait to hang out with @Bob and @Carol at the junk
yard tomorrow!” We say that one communication has taken
place between @Alice and @Bob and another communication
has taken place between @Alice and @Carol. This is true
regardless of the semantic content of the tweet.

A. Experiment 1: A Strategic Partnership Signed between
Afghanistan and India

Within an atmosphere of increasing tensions between
Afghanistan and Pakistan, Afghanistan signed a strategic part-
nership with Pakistan’s historic enemy India, on October 4,
2011. We used this as the event in our analysis of network
responses. To obtain tweets before and after the event on Oc-
tober 4, we steadily collected tweets from Kabul, Afghanistan
between September 29, 2011 and October 7, 2011. This
collection effort resulted in 7,523 tweets containing 1,913 users
and 5,398 communications between those users.

Temporal Group Detection found seven groups, two of
which were identified as groups of interest by Behavior Plot-
ting (Algorithm 3). Figure 2 shows how the SNA metrics for
the seven groups changed from before the event (base of the
arrow) to after the event (head of the arrow). The x and y axes
represent the values along the top two principal components
of a vector-based SNA representation after PCA was applied.
The slope of the vectors indicates that groups 7 and, to a lesser
degree, 6 were anomalous. This pattern of anomalous behavior
corresponds to the external information shown in Figure 3.
Those two groups in the plot in Figure 2 were the same groups
who were the least interested in India as measured in the bar
graph in Figure 3 by their percentage of tweets about India.

anomalous

anomalous

first principal component

se
co

n
d

 p
ri

n
ci

p
al

 c
o

m
p

o
n

en
t

Fig. 2. The response of the seven groups to the event of the signing of the
strategic partnership between Afghanistan and India. Groups 6 and 7 appear
to respond differently than the others. The principal components are linear
combinations of the twelve SNA metrics, as found by the PCA dimensionality
reduction algorithm [22].

0

0.01

0.02

0.03

0.04

0.05

0.06

n1 n2 n3 n4 n5 n6 n7

Percent of tweets mentioning India per group

anomalous

Fig. 3. The frequency of tweeting about India among the seven groups. The
groups that reacted differently in Behavior Plotting, groups 6 and 7, mentioned
India less often than the others did.

The subjective results shown by Behavior Plotting (Al-
gorithm 3) shown in Figure 2 correspond to the objective
ranked results from Anomaly Ranking (Algorithm 4). Anomaly
Ranking declared that the most anomalous group was 7,
followed by 6, 4, and 1. The remaining three groups were
unranked as per the algorithm description.

B. Experiment 2: The Death of Steve Jobs

We also examined data collected around the time of the
death of Steve Jobs on October 5, 2011. Tweets were collected
in two stages. In the first stage, we collected tweets for
Temporal Group Detection from each member of a social
network of size 784 that was centered on an individual in
the United States. We collected tweets from September 25,
2011 until October 7, 2011. The tweets resulted in 460 users
and 3,318 communications between users. In the second stage,
to determine the proclivity of each user to tweet about Steve
Jobs, we collected tweets from each user in each group going
backward from October 24, 2011. For each user, we collected
tweets (in batches of 20) until Twitter returned 0 tweets, or
the last tweet was before September 15, 2011.

Temporal Group Detection again found seven groups, of
which group 7 was identified as a group of interest by Behavior
Plotting (Algorithm 3), as shown in Figure 4.2 To determine

2It is a moderate coincidence that both experiments produced seven groups
with the last group being anomalous. The parameters of Temporal Group
Detection can be set to find as few as a handful of groups to as many as
dozens of groups, depending on the needs of the user.

first principal component

se
co

n
d

 p
ri

n
ci

p
al

 c
o

m
p

o
n

en
t

anomalous

Fig. 4. The response of the seven groups to the event of the death of Steve
Jobs. Group 7 appears to respond different than the other groups.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

n1 n2 n3 n4 n5 n6 n7

Percent of tweets mentioning Steve Jobs per
group

anomalous

Fig. 5. The frequency of tweeting about Steve Jobs. The group that reacted
differently, group 7, mentioned Steve Jobs less than the others did.

if group 7 really was anomalous with respect to the event of
the death of Steve Jobs, we counted how often members of all
the groups tweeted about Steve Jobs. We see in Figure 5 that
group 7 did indeed tweet less about Mr. Jobs. The subjective
results from Behavior Plotting (Algorithm 3) shown in Figure 4
again correspond to the objective ranked results from Anomaly
Ranking (Algorithm 4). Anomaly Ranking declared that the
most anomalous group was 7, followed by 4, 5, and 6.
The remaining three groups were again unranked as per the
algorithm description.

We also looked at Klout, an online service with a publicly
available API that ranks the importance of users in social
media. For the groups from Experiment 1, Klout scores did not
appear to correlate with how anomalous a group was. However,
with the groups arising in experiment 2, the anomalous group
7 had the lowest average Klout score.

VI. FUTURE WORK AND CONCLUSION

We presented a pair of algorithms that allow one to find
groups of interest in large datasets of communications. We
found, in two experiments with social media data, that groups
that were different with respect to a key event can be identified
within a larger set of groups by analyzing the structural
changes of the group in response to the event.

Future work will focus on making these statements more
precise by assigning properties to both groups and events and
using correspondences between properties to make predictions
about group responses to those events. In particular, we will
define the concepts of “responding” to an event and what
constitutes a “group of interest” with more rigor. One approach
is to only consider the magnitude of a response. If each

group can be assigned a set of properties based on external
information about the members of the group, and each event
can also be assigned a set of properties, and if we can define a
correspondence between group properties and event properties,
then our hypothesis is that the magnitude of response to an
event will be greater for those groups that have a property that
corresponds to a property of the event. Such a framework of
comparing properties between groups and events should allow
the algorithms in this paper to make more precise predictions.

Acknowledgments.: We thank the Office of Naval Research
for funding this work.

REFERENCES

[1] D. Laney, “3D data management: Controlling data volume, velocity and
variety,” Application delivery strategies, vol. 949, 2001.

[2] M. Abbasi, S. Chai, H. Liu, and K. Sagoo, “Real-world behavior
analysis through a social media lens,” Social Computing, Behavioral-
Cultural Modeling and Prediction, pp. 18–26, 2012.

[3] S. Wasserman and K. Faust, Social network analysis: Methods and
applications. Cambridge university press, 1994, vol. 8.

[4] L. Tang and L. H., Community Detection and Mining in Social Media.
Morgan and Claypool Publishers, 2010.

[5] S. Wasserman and K. Faust, Social Network Analysis: Methods and
Applications. Cambridge University Press, 1994.

[6] J. Abello, M. Resende, and S. Sudarsky, “Massive quasi-clique detec-
tion.” in LATIN, 2002. Springer-Verlag, 2002, pp. 598–612.

[7] P. Hoff, A. Raftery, and M. Handcock, “Latent-space approaches to so-
cial network analysis,” Journal of the American Statistical Association,
vol. 97, pp. 1090 – 1098, 2002.

[8] M. Handcock, A. Raftery, and J. Tantrum, “Model-based clustering for
social networks,” Journal of the Royal Statistical Society Series A, vol.
127, pp. 301 – 354, 2007.

[9] P. Sarkar and A. Moore, “Dynamic social network analysis using latent
space models,” vol. 7, pp. 31 – 40, 2005.

[10] I. Borg and P. Groenen, Modern multidimensional scaling: theory and
applications. Springer, 2005.

[11] G. Qi, C. Aggarwal, and T. Huang, “Community detection with edge
content in social media networks,” in Data Engineering (ICDE), 2012
IEEE 28th International Conference on. IEEE, 2012, pp. 534–545.

[12] S. Zhu, K. Yu, Y. Chi, and Y. Gong, “Combining content and link
for classification using matrix factorization,” in Proceedings of the
30th annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, 2007, pp. 487–494.

[13] S. Asur, S. Parthasarathy, and D. Ucar, “An event-based framework for
characterizing the evolutionary behavior of interaction graphs,” in KDD
’07: Proceedings of the 13th ACM SIGKDD international conference
on Knowledge Discovery and Data Mining, 2007, pp. 913 – 921.

[14] J. Hopcroft, O. Khan, B. Kulis, and B. Selman, “Tracking evolving
communities in large linked networks,” pp. 5249 – 5253, 2004.

[15] R. Kumar, J. Novak, and A. Tomkins, “On the bursty evolution of
blogspace,” World Wide Web, vol. 8, pp. 159 – 178, 2005.

[16] G. Palla, A. Barabasi, and T. Vicsek, “Quantifying social group evolu-
tion,” Nature, vol. 446, pp. 664–667, 2007.

[17] F. Akoglu and C. Faloutsos, “Acm wsdm 2013 tutorial:
Anomaly, event, and fraud detection in large graph datasets,”
http://www.cs.stonybrook.edu/ leman/wsdm13/.

[18] DSP: DAGGAR System Prototype V 1.12 User Guide, 21CT, 2010.
[19] S. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1,

no. 1, pp. 27–64, Aug. 2007. [Online]. Available: http://dx.doi.org/10.
1016/j.cosrev.2007.05.001

[20] M. Moy, “Computer automated group detection,” U.S. Patent 7,480,712,
2009.

[21] L. Hitt and M. McClain, “Method and apparatus for identifying a
threatening network,” U.S. Patent 13/730,191 (utility application), 2012.

[22] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. Wiley,
2001.

